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The low Reynolds number dynamics of a thin layer of fluid bounded below by a flat horizontal 
boundary and moving buoyantly through a fluid of another viscosity and density is observed by means of 
model experiments and is described theoretically. Three distinct stages of growth were observed. The first 
stage is described by a linearized Rayleigh-Taylor instability, for which previous literature, present theory, 
and experiments exhibit close agreement. In this stage, disturbances of one specific wave number are 
found to grow most rapidly. In the second stage, distortion of the interface is large enough to invalidate 
the linearized analysis. It is found experimentally that the fluid moves upward as circular columns sur- 
rounded by relatively broad regions of descending material. A theory is advanced that attributes an 
accelerated growth to a structure of this kind through a resonant triad interaction. In the third stage, fully 
matured structures are formed. If the upwelling material has greater viscosity than the surrounding 
material, the structure is a long vertical column with gradually decreasing diameter; if the upwelling 
material has less viscosity than the surrounding material, the structure develops a rim syncline and a 
pronounced overhang and eventually ascends as a spherical pocket of fluid fed by a pipe. Dynamic ex- 
planations for these features are advanced, and somepossible implications for geological and geophysical 
processes are discussed. , 

A number of theories about the internal horizontal structure 

of the mantle involve hot spots, mantle plumes, pipes, ascend- 
ing sheets of fluid under ridges, ascending blobs of fluid un- 
der island arc chains, and the like. More needs to be done to 
reconcile the possibility of such structures with what is known 
of flow in a deformable material. 

Likewise, on a smaller scale, various types of diapirs are 
believed to be formed from a density in.version. Perhaps the 
most highly studied example is salt domes, a considerable 
amount being known about the structure of the domes and the 
fluid properties of salt at elevated temperature. However, a 
variety of other diapiric structures possibly have similar 
dynamic origins, such as granitic batholiths, mud volcanoes, 
mud lumps, and clay diapirs. Survey papers and a recent 
bibliography are given by Braunstein and O'Brien [1968]. 

As an attempt to understand such structures, this paper is 
concerned with the qualitative shape and quantitative 
dynamics that occur When a fluid of a given large viscosity 
moves buoyantly up or down through a fluid of another large 
viscosity and density in a field of gravity. We report on experi- 
ments in which a thin horizontal layer of fluid is observed to 
go unstable and deform to a matrix of upwelling spouts that 
rise through a denser fluid of another viscosity. It is observed 
that the structural features are strongly dependent on which 
fluid is more viscous. The dynamics of such a process is dis- 
cussed. Experiments in which a fluid is fed from a continuous 
source are described, and it is again noted that the structural 
features are strongly dependent on which fluid is more viscous. 
Theories for the formation of the structures are advanced by 
using Newtonian fluid dynamics. Lastly, a comparison with 
some diapiric formations will be made. 

Of the theoretical and laboratory studies of diastrophic 
movements that have been previously modeled by theory or in 

Copyright ̧ 1975 by the American Geophysical Union. 

laboratories, the greatest number were aimed specifically at the 
salt dome problem. 

The investigation. s have utilized essentially two approaches. 
In the first the materials have been assumed to be Newtonian 

fluids. Analytical results were then obtained for the growth 
rates of disturbances in a fluid that is initially almost perfectly 
flat. This problem has been formulated by, among others, 
Dane• [1964], solved theoretically by Selig [1965], solved also 
by Blot and Odb [1965] and Blot [1966], and solved numericaH, y 
for many layers by Ramberg [1968a, b]. In all cases the 
equations could be solved analytically as a linearized problem, 
and recourse to a computer was necessary only to avoid heavy 
algebraic manipulation. Recently, Berner et al. [1972] have 
used finite difference methods to study more matured struc- 
tures that cannot be studied analytically. Emphasis in all the 
papers was confined to the range of parameters believed to be 
important in salt domes. 

Experimental observations of such a Newtonian fluid were 
made by Nettleton [1934] and Dobrin [194'1] in which clear 
photographs and detailed qualitative discussion revealed that 
such domes possess many features of real salt domes, although 
no theories were advanced to explain the features of the struc- 
tures. 

The second approach has been to study the instability of 
materials whose rheology is felt to be somewhat more 
earthlike. Because of uncertainty in the rheOlogical equations, 
very little theoretical or quantitative work is possible, and the 
articles are confined to describing qualitative features of the in- 
trusions. An extensive work of this nature is by Parker and 
McDowell [1955], which also contains an excellent 
bibliography of earlier work. A second set of qualitative ex- 
perimental studies has been done by Ramberg [1963, 1967, 
1970], who subjected specimens of pasty material to cen- 
trifugal forces. This approach has the distinct advantage that 
relatively complex and realistic geometries are easily studied, 
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and specimens can be stored and studied for a relatively long 
period of time. 

The present paper differs from these earlier works in that a 
large range of viscosities is studied theoretically, and ex- 
periments are conducted for the limiting cases. 

OBSERVATIONS OF UNSTABLE LAYERS 

This section will describe some simple experiments that were 
performed in order to visualize the problem. The experiments 
were suggested by D. Griggs after a seminar given by D. 
Chappell at the Institute of Geophysics and Planetary Physics, 
University of California at Los Angeles, in 1969. A container 
was almost completely filled with glycerin with a kinematic 
viscosity of 1400 cm•'/s and a density of 1.25 g/cm 3, to which a 
small amount of immiscible silicone oil with a viscosity of 60,- 
000 cm•'/s and a density of 0.92 g/cm 3 was added. This formed 
a layer on top of the glycerin approximately 5 mm thick. The 
container was then carefully covered so that no air was left in 
it. After being left overnight, the container was inverted. In 
about 30 s the layer of viscous oil (which was on the bottom of 
the tank) was observed to develop protrusions that buoyantly 
pushed upward through' the glycerin as long buoyancy-driven 

neck of fluid feeding these pockets almost pinched off and left 
a tiny pipe of fluid trailing the main pocket of fluid, which 
descended through the viscous fluid as almost perfect spheres. 
This sequence is shown in Figure 2. The pictures are inverted 
for clarity. 

It appears that the unstable flows proceeded through three 
distinct physical flow stages, which will be discussed in the next 
three sections. Initially, the surface was nearly flat, while small 
distortions to the interface grew by a Rayleigh-Taylor in- 
stability. During this stage the assumption of an almost flat 
surface allows the equations to be linearized, and the 
equations that describe the growing flow have long been 
known. Such a study predicts the wavelength of maximum 
growth and the exponential time constant of growth. The 
predicted rates, which will be described in the next section, 
agree with various observations in the literature as well as with 
observations in the experiment described here. 

The second stage occurred when the interface became dis- 
torted enough to violate the linearizing assumptions of the first 
stage. More complicated physical processes that generally 
have not been identified began to occur at this stage. A few of 
the things that can happen are enhanced growth rate (super- 

columns, shown in the series of photographs in Figure 1. We exponential), nonlinear interactions among the various grow- 
found in particular, that if the container was left carefully ing modes, and a consequential narrowing of the class of the 
leveled for a number of days so that the oil interface was very fastest growing modes. A work discussing this stage will be 
flat before inversion, the columns that developed were spaced briefly described in the section on the initiation of spouts. 
quite uniformly throughout the tank and were very nearly In the third stage the interface was greatly distorted, and the 
equal in size, volume, and growth rate. The wave number of intrusions had developed a matured structure. The linearized 
the columns, defined as 2;rH/L, where L is the distance 
between columns and H is the depth of the fluid, was 
2.5. 

The same experiment was performed with another container 
filled almost completely with silicone oil and with a thin layer 
of glycerin on the bottom. Again, after the container was 
carefully leveled and left for a couple of days, a series of 
protrusions developed shortly after inversion. These 
protrusions also arranged themselves quite uniformly through- 
out the tank, but the wave number in this case was much less, 
0.63. The finite amplitude behavior of these protrusions was 
dramatically different from that of the previous case. The 
protrusions formed fat spherical pockets of fluid that grad- 
ually developed pronounced overhang to the point where the 

solutions now are completely inadequate for describing the 
flow. The experiments indicated that this final state is also a 
strong function of the ratios of the viscosities of the two fluids. 
The dynamics of these structures will be hypothesized and 
tested against experiment. These will be described in the sec- 
tion on rim synclines, overhang, and 'necking.' 

INITIAL INSTABILITY 

The Rayleigh-Taylor instability has been described 
elsewhere and will be only briefly reviewed here. The algebra 
used to derive these relations is in Appendix 1. The coordinate 
notation is shown in Figure 3. 

When the interface between a thin layer of fluid and an 
overlying region of denser fluid is slightly distorted, a small 
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Fig. 1. A thin layer of viscous fluid protruding into a fluid with 1/44 its viscosity. 
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Fig. 2. A thin layer of fluid protruding into a fluid with 44 times its viscosity. 

pressure gradient is created in the horizontal direction. In a 
viscous fluid a slow flow will thus be created, no matter how 
small the pressure; the same is not true of a plastic material. To 
a first approximation, distortion of the interface arises from 
vertical movements; i.e., Ort/Ot = w(z = 0). when •/is the inter- 
face that was originally at z = O. This flow can be .fully de- 
scribed theoretically, as is demonstrated in Appendix l, and 
the solution to both regions is of the form 

W= f (z) g(x, y)e": (1) 

where W is the velocity in the z (vertical) direcuon andf (z) is 
the solution to the equation 

(D •' - k•') •'f (z) = 0 (2) 

where D is a derivative with respect to z. The function g(x, y) 
satisfies the equation 

(•'/•x •' + •'/•y•') g(x, y) = -k•'g(x, y) (3) 

The class of periodic functions that satisfy such an equation is 

infinite, but some simple functions are sin (k-x) or cos (k-x) 
(where k is a vector in some arbitrary horizontal direction), 
Bessel functions, and the sums or differences of such functions. 
Because of the generality of (3), the linearized Rayleigh-Taylor 
analysis is not very specific about the x-y dependence of the 
flow but can only indicate that the flow is described by some 
horizontal length scale 2•r/k. We must wait for more processes 
to act from the nonlinear aspects of finite distortion of the sur- 
face before we can be more specific about horizontal structure. 
For given boundary conditions on f(z) the growth rate n is a 
function only of the magnitude of wave number k, and obtain- 
ing this dependence involves solving for the matching con- 
ditions at the interface. Results have been derived by Selig 
[1965] for a single layer penetrating into an infinite fluid and 
by Ramberg [ 1968a] for many layers. When the viscosity of the 
thin layer is very large, growth rate as a function of wave 
number is derived in Appendix I and is sketched in Figure 4. 
The wave number of fastest growth is 

km= (180•)'/5/2h (4) 
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Fig. 3. Sketch of the system studied and definition of cOOrdinates. 
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where h is the depth of the thin layer, • = j[•2/j[•l (J[•l being the 
viscosity of the thin layer and #•. being the viscosity of the in- 
finitely deep layer), and the growth rate is 

n = (-gAph/4#O(1 - 0.443• 4/5) (5) 

Note that the growth rate is determined almost entirely by the 
large-viscosity fluid. The results for very large • are sketched in 
Figure 5 for a free slip boundary below the thin layer, 

km= 2.88•-•/8/2h n = 0.232 (gAph/•t•.)•- 1/3 (6) 

and for Selig's case with no slip (his equations (2.11)), 

km= 2.15•-•/•/h n = 0.153 (gAph/t. to.){ -x/a (7) 

The boundary conditions affect the constants in these 
equations slightly but do not affect the power laws, as can be 
seen by examining the equations governing n as a function of k 
or by using variational arguments. 

INITIATION OF SPOUTS: THE EFFECT OF FINITE AMPLITUDE 

In the last section it was emphasized that the horizontal 
structure of the solutions to the linear stability problem is not 
unique. As distortion of the interface becomes large, the effects 
of the distortion can narrow the range of the fastest growing 
solutions, and a theory of the means by which this is done is 
given in Appendix 2. The basic idea is similar to earlier ideas 

about the behavior of B6nard cells, which can arise in fluid 
heated from below having temperature-dependent physical 
properties [Busse, 1962] or time-dependent behavior 
[Krishnamufti, 1968a, b]. The difference between cells, which 
are composed of isolated regions of rising fluid surrounded by 
a sea of descending material (or vice versa), and rolls, in which 
regions of ascending and descending fluid are continuously 
connected, has been pointed out by Stuart [1964]. The essence 
of the theory in Appendix 2 involves the role of the equation of 
movement of the interface, 

Drl/Dt = w(•) (8) 

where the interface is at 

n(x, y, t) (9) 

and w(n) is the vertical velocity at 7. When (8) is expanded in a 
Taylor series about the plane n = h, we get the equation 

Ow O•t] OrtJ o, w(n) + - - Tyy ,. Ot-- •zz h • 
+ higher orders (10) 

When velocity and rt are very small, the last four terms are 
negligible, and yet when the amplitude gets larger, they 
become relatively larger. 

How do solutions to the linear problem in the preceding sec- 
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Fig. 4. Normalized growth rate n' = (4#xn/g/Xoh)(1 - 0.443W 5) as a function of wave number K = 4•'h/X, where 3, is the 
wavelength for the case where the thin layer is very much more viscous than the deep fluid. Note the broad region between 
K = •/a and K = •/5 where growth only changes from 1 - •2/a to 1 - 0.443• 4'?•. , 
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Fig. 5. Normalized growth rate n" = t•2n/O.232gAoh as a function of wave number K = 4•-h/X, where X is the wavelength 
for the case when the thin layer is much less viscous than the deep fluid. 

tion affect the quadratic terms? First, we note that if a solu- 
tion like sin kx or cos kx is inserted into (10), the growth rate 
is enhanced at a wavelength of 2k, which is not in the region 
of maximum linear growth. However, the famous solution 

3 

•/ = Z COS k,•'x 

where [kll - I kg[ -Ika - kmax and ki q- k2 q- k3 = 0, en- 
hances the growth rate •r//St in the vicinity of kmax when the 
three vectors form the sides of an equilateral triangle. 

The flow pattern of the above form is sketched in Figure 6 
and consists of isolated ascending domes surrounded by a 
hexagonal matrix of descending material or, alternatively, of 
isolated descending domes surrounded by a hexagonal matrix 
of ascending material. Appendix 2 shows how the 'sense' of 
the hexagons is related to the relative signs of •w/•z and 
w from the linear solution in Appendix 1, and how when one 
layer is very thin, these quantities always have a sign such 
that fluid protruding from the thin layer has the form of iso- 
lated cfi'cular domes and fluid intruding into the thin layer 
has the form of a hexagonal matrix. 

The physical reason for the development of such a planform 
has been mentioned previously by Dane•, although not in con- 
nection with the resonant triad that produces the spouts in the 
hexagonal matrix. The nonlinear terms in (10) sweep fluid 
toward either the protruding region or the intruding region, 
depending on the relative signs of w and a w/az, so as to make 
one of the two regions larger in cross section than the other. 
Consequently, the fluid in the constricted region is made to 
flow more rapidly in order to conserve mass. However, fluid 
leaving the thin layer can, in fact, flow more rapidly than fluid 
entering the thin layer, which is slowed by the lower bound- 
ary. The fluid leaving the thin layer is concentrated in a cir- 
cular central region having a much smaller area than the in- 
truding fluid. This solution thus automatically satisfies a 
constricted flow condition into the thin layer. The reader is 
urged here to examine Figures 1 and 2 again to verify that 
the fluid coming out of the layer is indeed very spoutlike in 
character, like the center of the hexagonal flows in Figure 6. 

FORMATION OF RIM SYNCLINES, OVERHANG, AND 'NECKING' 

After the circular jets have formed as described experi- 
mentally in the section on stable layers and physically in the 

section on the initiation of spouts and after the distortion of 
.the layer approaches that of its depth, the spouts begin a stage 
of maturation. Experimentally, it was found that the structure 
henceforth is dependent on the viscosity ratio of the two fluids. 

We treat first the case where the upwelling fluid is much 
more viscous than the fluid being penetrated (Figure •). Con- 
tinuity dictates that the velocities be of the same order of 
magnitude in both fluids, and it can be assumed that the rates 
of strain of the fluid in both regions are comparable since 
deformation is caused by movement of the interface. Therefore 
the stresses due to viscous deformation are proportional to 
viscosity. When the thin layer is much more viscous, the force 
balance is between forces due to pressures generated by density 
differences and forces due to vigcous deformation in the up- 
welling fluid. 

The matured jet can therefore be modeled by the viscous 
fluid being poured from a spout, like syrup being poured from 
a pitcher. Such a steady viscous jet is shown in Figure 7, in 
which silicone oil with a viscosity of 60,000 cSt drops thr0ugh 
silicone oil with a viscosity of 10 cSt. Notice the similarity 
between the structures in Figures 1 and 7. The theoretical solu- 
tion of this flow follows so directly that it does not need to 
be tested against experiment. We assume little radial depend- 
ence, so that the equatiøn of motio n is 

p = gAOz 

which, when it is integrated, gives w = (gAp/2pv)z • + glz + B. 
Far downstream, but not farther than (gAp/pv•') x/a, the radius 
of the spout can be found from continuity to be 

r = c/z (1I) 

where c is a constant. 

Fig. 6. Sketch of the regions of ascending and descending flows for 
hexagonal flows, w = En=• 8 cos kn.x, where k satisfies the resonant 
triad. The D denotes downflow; U denotes upflow. 
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Fig 7. Fluid with a viscosity of 60,000 cSt rising &om a spout 
through fluid with a viscosity of 10 cSt. 

In the Rayleigh-Taylor instability the source of fluid is not 
steady in time but instead is being constantly depleted. It is not 
hard to modify the theoretical solution (11) to accommodate 
such a changing source condition, and the jet is still 
theoretically self-similar. Experimentally, when such a jet is 
suddenly turned off, the jet begins to gradually decrease its 
diameter, and yet it retains its identity. A comparison of 
Figures 1 and 7 shows the similarity between the jet in the 
Rayleigh-Taylor instability and the jet from a spout. 

Before proceeding, we note that the principal effect of sur- 
face tension on such a viscous spout is to cause waves to grow 
and eventually break up the spout into spheres. This breakup 
was never observed until many minutes had passed in the ex- 
periment, when the spouts were about a tenth of their initial 
radius. It appears that during the three stages of the ex- 
periments described here the surface tension has only a small 
effect on the flows. 

We therefore see that there is little tendency for a very 
viscous dome to develop a plumelike structure with rim syn- 
clines that neck off. The nose of the dome can experience a 
small amount of local widening, which is produced as the 
dome pushes its way upward through the low-viscosity 
material, as is shown in Figure 7. In the experiments this dome 

has been seen to be approximately twice as wide as the viscous 
pipe that follows it. 

When the upwelling fluid is much less viscous than the fluid 
being penetrated, the structure evolves along a very different 
sequence. Again, continuity dictates that the rates of strain in 
both regions are comparable, so that the significant forces are 
connected with the fluid of greater viscosity. As you might 
recall from the sequence of photographs in Figure 2, the jet 
pushes outward into this viscous material, and its nose is sub- 
jected to a gradually increasing normal stress that ultimately 
provides most of the drag equal and opposite to the buoyancy 
force. By this time, most of the material from the layer has filled 
a rather large cavity, and a pronounced rim syncline is 
produced 'around the cavity. As the pocket of fluid begins 
to rise, it begins to neck off, since there is no more fluid 
available to fill the neck. This results in severe necking and a 
pronounced overhang, which gradually increase until the neck 
shrinks to a very small size. The bulk of the fluid then rises as 
almost a perfect sphere, which is a solution to the flow 
equations of a fluid with small viscosity rising through a fluid 
of very much larger viscosity, while a small pipe trailing the 
spherical cavity brings more fluid upward. 

This structure looks very much like some of the simpler salt 
domes. It has been suggested that in the case of salt domes the 
fluid necks off because the source of fluid' is depleted. We 
believe that this is not the case because the phenomenon 
of necking is a very basic feature of such flows and does 
not require a limited source of material. Figure 8 shows 
10-cSt oil being fed at a steady rate into a denser silicone 
oil with a viscosity of 60,000 cSt. Basically, a pocket of fluid 
forms at the spout and grows until it attains a diameter 
great enough to buoyantly rise more rapidly than the rate of 
growth of the radius. The cavity of fluid then rises away, leav- 
ing a small pipe that continues to feed the parent cavity. 

If the flow is stopped, a neck consisting of small amounts of 
the lower-viscosity fluid trapped by friction remains long after 
the initial starting plume has passed. If the flow is reinitiated 
before this neck completely diffuses away, the old neck offers a 
path of least resistance, so that the fluid travels up the old neck 
faster than the initial dome with a nonspherical shape. In 
Figure 8 two former pipes are visible. In the latter stages of the- 
sequence the circular dome breaks into one of the pipes and 
rises to the surface quickly. 

Experiments were also conducted with two immiscible 

Fig. 8. Fluid with a viscosity of 10 cSt rising from a spout into a fluid with a viscosity of 60,000 cSt. 
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fluids. For slow flow the trailing pipe did not exist, but instead 
surface tension closed the pipe off and another sphere began to 
form. Motor oil with a viscosity of 3.2 cm•/s and a density of 
0.86 and silicone oil with a viscosity of 3.7 cm•/s and a density 

ß 

of 0.96 were also used to study the flow that results when 
viscosities are nearly equal. These two fluids are not miscible 
but appear to have low interfacial tension. The nose of the 
resulting spout developed a flow resembling a vortex ring, as is 
shown in Figure 9. This flow entrained surrounding fluid and 
is particularly interesting from a fluid dynamic point of view 
because it exhibited entrainment at a Reynolds number of ap- 
proximately 2. 

A THEORY OF Tile DYNAMICS OF LOWER-VISCOSITY DOMES 

AND IMPLICATIONS FOR SALT DOMES AND PLUMES 

An approximate theory of the dynamics of the lower- 
viscosity dome process can be developed by using the Stokes 
approximation for the rate of ascent (or descent) v of a sphere 
of radius a, density O + AO, and viscosity g in a fluid of density 
p and viscosity # [Batchelor, 1970]. 

1 a•__g (z•O)( #--[- • ) (12) 
For • << #, this equation reduces to 

v = V3 (a•'gAo/g) (13) 

anO ,by then using continuity to find the increase in volume of 
the sphere, 

da (Q_7rro2a2gAph 4•-a 2 -• = 3 •-- / (19) 
Before integrating (19), it is convenient to nondimen- 

sionalize by using the transformations 

t• = (Q/4•rca)•/2t,• 

aa = (Q/4•rc)•/•a,• 
where 

Q_\ •/, gap c= 160•' •) 
subscript d denotes a dimensional variable, and subscript n 
denotes a nondimensional variable. The nondimensional 

equations are 

da/dt = (l/a •') - I (20) 

where the subscript n has been dropped. No parameters re- 
main in the equation. We note that the growth rate is zero 
when a = 1. This equation can be integrated directly, although 
the result is algebraically so complicated that it is clearer to in- 
tegrate it by using finite differences on a hand calculator. 
Figure 10 shows the final result: it is characterized by t 

Suppose that a pipe feeds fluid of viscosity • into the more ,.growth in early times (t << (Q/4,rc3) 1/•') and maturation to the 
viscous fluid at a constant rate Q, as it did in the experiment 
described at the end of the previous section. If originally the 
sphere is small enough that da/dt > v, it will continue to stay 
near the source and grow at the rate 

da/dt = Q/4•'a •' (14) 

The sphere can be expected to rise away from the source after v 
becomes larger than da/dt, at which time it will have a radius 
that can be determined by using (13) and (14) as 

ao = (3Q#/4•rgAo)•/4 (15) 

The time that it takes to form this sphere is given by 
which is 

to = (4?r/3Q)X/'(#/gAp) 3/' (16) 

After it rises upward, a pipe of fluid will trail the parent cavity. 
If the introduced fluid is of a much smaller viscosity than the 
host fluid, the equation of laminar pipe flow is valid in the 
pipe; this equation is 

'final size in times of order (Q/4,rc3) •/•'. 
In our experiments, with Q = 0.09 cm3/s, g = 980, Ap = 

0.042, U = 600 cm•'/s, and • - 0.05 cm•'/s, c = 9.5 X 10 -5, the 
time scale is 90,843 s, and the length scale is 8.6 cm, and so a 
radius proportional to t 1/3 should be expected. Figure 10 shows 
measured radii as a function of time from the data in the ex- 

periment shown in Figure 8. An arrow in Figure 10 shows the 
size of the original diameter of the cavity predicted from (15) 
as it begins to detach. Examination of the photographs (Figure 
8) shows that the process of detachment takes somewhat 
longer than the idealized model predicts, perhaps owing to 
drag from the pipe. 

In view of the qualitative and quantitative agreement 
between experiment and theory, it appears safe to conclude 
that the above theoretical model is reliable for describing the 
behavior of a viscous fluid rising through a more viscous fluid 
from a continuous source that is suddenly turned on. We can 

1 

w = gzxo(o r " 
where r0 is the outside radius of the pipe and r is the distance 
from the center of the pipe. Mass flux is found by integration 
to be 

Q = (•r/8•)gApro 4 (17) 

and (17) can be inverted to give r0 as a function of Q: 

ro = (8gQ/•rgAp) TM (18) 

It is observed experimentally that the sphere continues to in- 
crease in radius as it rises through the viscous fluid. This in- 
crease can be determined by calculating the volume change of 
the pipe, I I I 

•rro•'V = (•'ro•'a•'gAp/3#) Fig. 9. Fluid rising through another fluid of similar viscosity 
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Fig. 10. (Top) Solution to the equation for the growth of a 
sphere (equation (20)) and (bottom) comparison of the observed 
radius with the solution to (20) when the dimensionless radius is small. 

also add, in passing, that it appears that surface tension plays 
only a small role in the experiments involving such structures 
and dynamics on the basis of agreement of data and surface 
tensionless theory, lack of pinching off of the neck (observed in 
earlier experiments with glycerin and silicone oil), agreement 
between the general structures observed in the Rayleigh- 
Taylor experiments with miscible fluids and the experiments 
described here with immiscible fluids, and the estimation of the 
size of the surface tension force to the buoyancy force, given 
by the so-called Bond number gApL•'/a, where a is surface ten- 
sion. For the liquids used here, this number is less than one for 
lengths less than 1 mm, which corresponds only to fine- 
structure features in this experiment. 

Of the thousands of diapiric structures that have been 
observed throughout the world, many possess features that 
appear to be typical of the natural flows in the model ex- 
periments described here. Others appear to possess nonfluid 
features, such as extensive tensile fracturing, slippage, and 
alignment along lines of large faulting. Of those exhibiting 

pockets of low-viscosity fluid rising from a deep source, as has 
been suggested in association with island arc chains, princi- 
pally in the Pacific. It may be possible, however, fox' non- 
Newtonian or solid processes in the lithosphere to break up 
such a pipe or to have pockets being formed owing to tilting of 
the feeder pipe by shear. This stability problem has yet to be 
studied. 

The analysis in this section could be used to determine 
growth time and size during the starting sequence of deep 
mantle plumes. The numbers that result from such 
calculations'are dependent on the viscosity and density of the 
upwelling material, the viscosity of the lower mantle, and the 
rate of injection of the material at the lower mantle, all 
relatively unknown properties. One can get some constraints 
on the permissible values of the properties in which plumes can 
be expected to have matured. If it is assumed that the 
parameters are such that the sphere at the top of the plume is 
still growing when it reaches the surface, the time of ascent 
through a mantle of thickness h is found by integrating (13) 
and (14). The resulting formula for time is 

t = (5#h/gAp) 8/5 (4,r/3Q) TM (21) 

The numerical values of this formula are plotted in Figure 11 
for a plume with a volume flux of 3.3 X 106 cmVs in a 3000- 
km-deep mantle. A plume of this size would overturn the man- 
tle in 1000 b.y. and is roughly twice as big as that producing 
Hawaii [Moore, 1971 ]. 

Time is plotted as a function of the poorly known variables, 
namely, mantle viscosity and plume density. It is evident that 
the parameter group #/g/Xo must be less than 10 •" for plumes 
to penetrate the mantle in less than some billions of years. if 
the viscosity of the mantle is assumed to be 10 •'• P, the density 
associated with plumes must be at least a percent or two 
different than that associated with the mantle in order for this 

inequality to be satisfied. 
This analysis is valid if the time given by (21) is less than the 

time scale used to nondimensionalize (20). In other words, this 
calculation is valid as long as the sphere at the top of the plume 
has not reached its maximum radius, which is the length scale 
used to nondimensionalize (20). In order for this to be true, the 
ratio of plume viscosity to mantle viscosity must obey the 
following relationship: 

(•/v) •/4 < 3 v* (4/5h) •/• (#Q/,rgAp) •/•'ø (22) 

fluidlike flow, many could be modeled by a viscous fluid rising The maximum value of •/v is plotted in Figure 11 on the 
through a second fluid of much higher viscosity. Typical right axis, and in any circumstance when this ratio is exceeded, 
features of such an intrusion would be rim synclines, the time calculation on the right-hand side of Figure 11 will be 
overhang, and necking off. These features have long been too small. 
known to be characteristic of salt domes. We caution the reader As more aspects of deep mantle convection become clear, it 
not to compare photographs with seismic cross sections unless is hoped that the above calculations will be useful. At present, 
the ratio of horizontal distance to vertical distance is 1' 1. one could conjecture that the processes generating the 

As was pointed out in the various papers of Selig, Biot, and parameters with the fastest rise times as given here are respon- 
others, the numbers from linear instability theories of a thin sible for the bulk of the plumelike activity observed on the 
layer with parameters of salt domes (e = 10 -4, #•. = 10 •'ø P, Ap 
= 0.4, hx ='300 m) yield spacings of the order of tens of 
kilometers and growth times of hundreds of thousands of 
years, which agree reasonably well with geological observa- 
tion. 

In terms of flows from deep in the mantle, it would be 
difficult to envisage a sheet of fluid rising through the mantle in 
view of the fact that the experiments exhibited spouts so early 
in their history. Since a pocket of low-viscosity fluid was 
trailed by a pipe, it is also hard to visualize a parade of isolated 

earth. 

CONCLUDING REMARKS 

We have reviewed here how, when a thin viscous fluid un- 
dergoes Rayleigh-Taylor instability into a deep viscous fluid 
above, the quantitative value of the horizontal wave number is 
a function of the ratio of the viscosities of the fluids and the 

growth rates are functions of a number of properties of the 
fluids. We have also reviewed the well-known theoretical 

arguments indicating that the flow pattern lacks any 
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Fig. 11. Time of ascent through the mantle (left abscissa and solid 
line) as a function of •Jg•o, as predicted by the theory for growing 
low-viscosity domes (equations (13) and (14)). The maximum ratio of 
plume viscosity to mantle viscosity for which this theory is valid is 
shown by the right abscissa and the dashed line. If this ratio is ex- 
ceeded, it will take longer for a plume to rise through the mantle. The 
mass flux 'used is 3.3 X 10 6 cmS/s. 

qualitative structure in the horizontal plane at this level of 
development. 

Second, we have described a theory of how a particular 
horizontal structure, the hexagonal matrix, develops as the dis- 
tortion of the previously flat interface becomes significant; this 
planform is characterized by circular columns of fluid 
protruding outward from the thin layer irrespective of the 
viscosity ratio of the two fluids. Such a jetlike structure is a 
central feature of most natural diapirs. 

Third, we have indicated experimentally and argued 
physically that a viscous diapir rising through a more viscous 
fluid develops a qualitative structure different from that of a 
viscous diapir rising through a less viscous fluid. The former is 
characterized by rim synclines, overhang, and eventual neck- 
ing off, whereas the latter is characterized by a long horizontal 
column whose radius decreases with height above the source. 
Last, we have shown experimentally that a horizontal layer 
having finite depth generates structures similar to those from a 
local source that emits material continuously. 

We close by noting that it is not clear that all diapiric struc- 
tures are less viscous than their surrounding media. It would 
be good to inquire whether granitic batholiths, for instance, 
rise from their deep origins as a very viscous rheid flow, 
perhaps being even more viscous than their surroundings, 
since they are characterized bY the absence of overhang and 
necking. 

A•'•'ENDIX 1 

To provide a foundation for the discussion on nonlinearities 
in the section on 'spouts, a linearized analysis of the Rayleigh- 
Taylor instability will be developed here. The theoretical paths 
toward such a solution are well trod, and the case of two in- 
finite fluids is developed by Chandrasekhar [1961, chap. 10], 
whose notation we adopt. The specific case of a thin layer un- 
derlying a deep layer of finite thickness has been investigated 
by Selig [1965], who emphasized the results that occur when 
the thin layer is less viscous than the deep layer. Our intent is 
to provide a convenient foundation for the subsequent discus- 
sion of the nonlinear problem. The subscript notation and the 
coordinates to be used are shown in Figure 3. It will be as- 
sumed that the system obeys the incompressible constant- 
property viscous flow equations, which can be written as 

V. u = 0 (AI) 

(O/Ot- vV2)u = -(1/p)Vp (A2) 

where u is the velocity of the fluid, v is the kinematic viscosity, 
and p is the deviation from hydrostatic pressure. These 
equations can be expected to be valid only for a system in 
which Umax(L/v) << 1, where L is the largest length scale in 
the problem (in this case the depth of the layer, the wavelength 
of the perturbation, or (v•/g)•/a, where g is gravity). Since fluid 
velocity in a viscous medium would be proportional to 
gApL•'/pe, the above criterion could be expected to be valid 
when gApLa/pe << 1, a criterion easily met in geophysics for 
all the length scales above. We can immediately write down a 
class of general solutions to these equations in regions I and 2 
without considering the details of the movement of the inter- 
face. By taking the curl of (A2) and using (A 1), the equation 
for the vertical component of vdocity w is 

(O/Ot - vv2)V2w = 0 (A3) 

Boundary conditions are to be that normal velocity and 
tangential stress are zero; that is, w = Ou/Oz = 0 at z = 0, • -• 
c•, which implies that w = 02w/Oz 2 = 0 at z = 0, • -• c•, and 
which allows solutions in regions 1 and 2 of the following 
forms: 

w• = (A sinh kz + B sinh q•z) f(x, y)e "t (A4) 

w• = (Ce -• • ae-•)f(x, y)e •t (A5) 
where q• = [k • + (n/eO] •/•', q•. = [k • + (n/e•.)] •/•, and 3•f/3x • + 
•'f/•y•' = -kø'f. To this order, the analysis admits a multiplic- 
ity of solutions, each one's growth rate depending on a two- 
dimensional wave number vector k on the x-y plane. This 
degeneracy will be reduced by the finite amplitude effects in the 
next section. At the interface, horizontal velocity u, vertical ve- 
locity w, tangential stress, and normal stress must be matched. 
The linearized expressions of these matching conditions are 

w• = w•. (A6) 

Dwx = Dwo. (A7) 

!•(D •' + k•')wx = !•. (D •' + k•)w•. (A8) 

[p,(O/Ot)- I•(D •-- k•)]Dw• -[- 2k•l• Dw• 

= [p•(O/ot) -- •(D •-- k•)]bw• 

+ 2k•bw• + k•g(p• -- p•)rl (A9) 

The last condition, (A9), is a balance of normal stress, where 
the interface is slightly distorted by an amount r/(x, y, t) = • = 
z - h, so that a buoyant t•orce is produced. 

The interface is swept along with the fluid so that 

Drl/Dt = w(r/) (AIO) 

For small distortions, (A10)can be expanded in a Taylor series 

On On Ow o• + u + •, = w(h) + + ... Ot •xx • rl '•z'z (All) 

where w and its derivatives are evaluated at the point z - h = • 
= 0. For arbitrarily small r/, (AI 1) reduces to 

Orl/Ot = w(h) (A12) 

Using the solutions given by (A4) and (A5) i'n (A6)-(A9) and 
using (A12), we obtain four linear homogeneous equations for 
the four constants ,4, B, C, and D. 
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For a solution to exist, the determinant of the following 
matrix equation must be equal to zero. 

The function n clearly has a maximum between the limits K = 
0 and K -• •o because for small and ,large K we find 

sinh kh sinh qlh -- 1 -- 1 

k cosh kh ql cosh ql h k q2 

2/.txk 2 sinh kh I. tx(ql 2 + k •) sinh qlh --2k•bt• --bt•(k • q- q•) 

1 1 q•C 1 1 q•C 5Rsinhkh -- Ccoshkh -- a l coshkh 5Rsinhq•h -- • coshqlh 5R q- C-- a• 5R q- • 

A 

B 

c 

D 

= 0 

(A13) 

where 

R = --(gk/n•')(at -- 

= + 

C = (k2/n)(0/yx -- 0/•) 

0/2 = 102/(101 + 102) 

1/2 = #,2/102 

Evaluating this determinant will enable us to determine the 
growth rate n as a function of the horizontal wave number k: 
The determinant is reduced to a 3 X 3 by dividing column 1 by 
sinh kh, dividing column 2 by sinh qth, subtracting column 1 
from column 2, subtracting column 3 from column 4, and 
finally adding column 1 to column 3. 

It is further reduced to a 2 X 2 by taking C/k times row 2 
and adding it to row 4, dividing columns 2, 3, and 4 by not, 
2Cut - g,)k', and np,, respectively, multiplying row 4 by 
npt/at, and finally adding column 4 to column 3 and adding 
column 2 to column 4. Assuming 

n/vt << k' <_ 0(1) n/v, << k •' <_ 0(1) 

which is equivalent to an assumption of slow viscous flow and 
is valid when gAph3/pv •' << 1, where v is either viscosity. 
Neglecting terms of order n •', we can write 

qx coth qth - k coth kh = 

l/:(n/etk)(coth kh - kh csch •' kh) (A14a) 

q,- k = n/2e,k 

and the determinant is reduced to the form 

(A14b) 

n = gAphK/4g, K << 1 K << ½ 

n -- q- ](e, e -h) K >> 1 K >> e 
u•K + e 

We will now seek the maximum growth rates as a function of 
the ratio of viscosities, e. For e << 1, (A1 $) has a maximum at 

K = (180e) x/5 = 2.83e "5 (AI6) 

Growth rate is 

n : (gAph/4gt)(1 - 0.443e 4/*) (A17) 

A sketch of this growth rate is shown in Figure 4, and this 
growth is characterized by a very broad region of nearly equal 
growth rate. 

For e >> 1, the wavelength of maximum growth is 

K = (24/e) x/a= 2.88e -x/a (AI8) 

Growth rate is 

n = (2gAph/33t,)(e/24) x/a= 0.232(gAph/stOe TM (A19) 

which has the same power law as a result found earlier by $elig 
[1965]. This growth is sketched in Figure 5. 

For e = 1, (A15) reduces to 

gA p O K -- 1- K) 
n -- (A20) 

2 3t • Ke K 

which has a maximum at K = 1.8 and a growth rate of 

n = O. 149(gAph/ttt) (A21) 

In summary, we find that the wave number of maximum 

1 + coth kh 1 1 
+ 

2(/.h -- tz•)k 2/.t•k 2/.t2k 

1 

q- 2-•k (coth kh -- kh csch •' kh) 

gap q_ /.t2q- /.t, q_ 0(n) u--! q- coth kh 
2nk(• -- /.z2) /.z2 

=0 

where Ap = p: - pt, and it is further reduced to the form 

n • gap I •1 •2(cøthkh--khcsch2kh) )'1 2k/•t /•(coth kh • kh csch • kh) • /•/•(1 • coth • kh) • /•2•(coth kh -- kh csch • kh 

We next simplify by putting • = u:/gt and 2kh = K to obtain 

K/z• sinh Kq- Kq- e(2 cosh K) q- e2(sinh K-- (A15) 
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growth depends on the ratio of viscosities when this ratio gets 
either large or small, and the wave number decreases in both of 
those limits. We also note that in all cases the inequalities 
before (AI4) are satisfied when gAoLS/or 2 << 1, where L is the 
longest length scale. 

APPENDIX 2: THE EFFECT OF NONLINEAR CONVECTION OF 
THE INTERFACE 

Although the wave number and the exponential growth rate 
were predicted in Appendix 1, more detailed structural 
features such as the pattern of the domes were beyond the 
scope of the linearized theory. One effect of noninfinitesimal 
distortion of the interface occurs in the conditions relating the 
rate of change of the interface with velocities at the interface. It 
will be studied here. There are other effects generated by the 
velocity and stress matching conditions that are beyond the 
scope of the present study. The expression for the change of 
the interface is 

Dr//Dt = w(r/) (B l) 

where w is the vertical velocity of the fluid at the position of the 
interface z = r/(x, y, t). We can expand (B1) in a Taylor series 
at the point z = h and retain terms up to second order as 

Or/_ w(h) + • • u • -- v (B2) Ot • 

We will discuss the role of this nonlinearity in conjunction 
with the solutions in the previous section. The equation set 
(A6)-(A9) plus solutions of the form 

w• = (A sinh kz + B sinh q•z)f(x, y, t) 

w• = (Ce -• + Oe-•)f(x, y, t) 
can be reduced to the form 

[gAph r/(x, y, t)]/K•i = {[sinh k + k + e(2 cosh k) 

q- e•'(sinh k -- k)]' [cosh k -- 1 q- e(sinh k -- k)] -'a} 
ß /(x, y, t) (B3) 

The right-hand side can be interpreted as the force of friction 
by the flow field, and the left-hand side can be interpreted as 

the force of buoyancy. From the evaluation of the previous 
section, we know that the term in brackets is smallest for 
the wavelength of fastest growth. 

We now ask what solutions can be found for this equation 
in conjunction with (B2). Substituting for f and using the fact 
that v6rticity in the z direction is zero, we find the relation 

Or/ gap { [0 (r/02)q_ 0 (r/0r/)l } (B4) Ot -- • r/-- r •-xx •yy •YY 
where E is the term in brackets in (B3) and 

1 0w 
F-- 

W 02 •=n 

We ask what flow configurations would make the right-hand 
term positive and also would make the above term produce a 
function with a wave number of minimum E. The function 

3 

•(x,y) = • cosk•'x (BS) 
n•l 

where 

kl+ k2 + k8 = 0 

Ik11 -Ikl -Ikl - kmax 

can generate a product r/(x, y) plus some other terms of 
different wave number. The three wave vectors that satisfy this 
equation form the sides of an equilateral triangle in k space 
and represent the familiar hexagonal pattern sketched in 
Figure 6 if w and -c•w/c9z are of opposite sign (on the left) and 
of the same sign (on the right). 

In order to determine the sense of the hexagons, it remains 
to determine the relative signs of the term w with respect to 
,9w/c•z for the linear solutions in Appendix 1. The linear ex- 
pression for vertical velocity in the deep fluid, (A5), is 

w2 = Ce -• q- De -q2• 
Hence 

(B6) 

Ow.,./Oz '- --kCe -k• -- q2 De -• 
We first solve for C as a function of D. Rewriting the first 

three lines of matrix (A13) as 

1 1 

k coth kh q• coth qlh k 

2•k • /.t•(q• 2 q- k •') _ 2•k •' 

--1 

q2 

and solving for C as a function of D give 

C .._. 

1 1 --1 

-- k coth kh q• coth qlh q2 

2t•ak • tq(qa 2 q- k2j --t•.(q• • q- k •') 

1 1 --1 

k coth kh ql coth 

2•k • •(q• -3- k 2) 

k 

-- 2•k • 

D 

D 

(B7) • 
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We next reduce the determinants to 2 X 2's by adding 
column 1 to column 3 and subtracting column I from column 
2. After we use (A 14), which are identities for q• coth q•h - k 
coth kh and q•. - k, (B7) reduces to 

C= -- 1 -[- -•. D 
2k v• 

where 

(B8) 

E = -#•. (sinh K - K) - #•(cosh K - 1) (B9) 

F = -#•.(sinhK- K)- •(coshK- I + K) (B10) 

where again K = 2kh. For small K, E is -#x/Cz/2 and F is 
-uxK. Using (B6) and (B8), we find, to order n, 

(Ow•./Oz) = --kc -- Dq2•_• k(--• -- l) (BII) w2 C-I- D 

and, for small K, we find, using (B9) and (B10), that 

w9. 2 

Therefore Ow/Oz and w are in phase, and the fluid protrudes 
upward into the deep layer as circular jets surrounded by a 
large region of fluid that sinks in a hexagonal pattern for all 
viscosity ratios. 

We thus see that this nonlinear term speeds the growth of a 
hexagonal pattern of flow where the central jets come out of 
the thin layer. Physically, this flow is selected because it adopts 
a configuration with an unequal cross section between ascend- 
ing and descending fluids. 

We note here that the arguments used in this section apply 
to a more general problem than that of two viscous fluids, one 
of finite depth and the other of infinite depth. This particular 
example was used because of its theoretical tractability. 

In the more general case of Rayleigh-Taylor instability, the 
nonlinear terms expressing convection of the interface do not 
change, and hence the direction of spouting of the hexagonal 
flow will still be determined by the relative signs of Ow/Oz and 
w. It is, in fact, possible to calculate a criterion that divides 
hexagons with one sense from those with the other. We look at 
the general problem of two fluids of depth h• and h•., density p• 
and p• (not necessarily close together), and viscosity #• and #•., 
where fluid I lies below fluid 2. We take our origin at the inter- 
face between the fluids, so in order to satisfy free slip con- 
ditions at z = -h• and z = h•, we represent the solution as 

Wl -- {A sinh k(z q- h,) q- B sinh [q,(z q- h•')]}g(x, y)e nt 
(B12) 

w•. = {C sinh k(z -- h2) q- D sinh [q2(z -- h2)]} g(x, y)e '•t 
(B13) 

We note here that it is not necessary to use functions that 
satisfy free slip conditions at z = -hx and z = h•., and the 
analysis outlined here could be used for other boundary con- 
ditions. We will set Dw• = Dw•. = 0 and ask what trajectory in 
viscosity-density-depth space allows solutions. This trajectory 
separates the region where spouts go into fluid 1 from the 
region where spouts go into fluid 2. 

Setting the z derivative of(Bl2) and (BI3)equal to zero and 
setting z = 0 yield the relations 

Bq• cosh q•h• 
A = -- (B14) 

k cosh khl 
, 

Dq2 cosh q2h2 
c = 

k cosh kh2 

Substituting these expressions into the expression w• = w2 and 
#•(D •' + k•')w• = #•.(D •' + k•')w•. (the equations expressing 
equality of normal velocities and tangential stress at the inter- 
face) yields two relations between B and D, and the condition 
that these are equivalent reduces to 

npl coth kh• . 
•1 -- 2k(ql coth qlhl -- k coth khl) 

np2 coth kh2 
= #2 -- 2k(q2 coth q2h2 -- k coth kh •) (B16) 

This is a general criterion valid for all density ratios, 
viscosities, and depth scales. It is not useful alone until 
something is known about n as a function of k. Since the 
buoyancy term has not been used in this derivation, it is 
generally possible to find a value of gravity that makes any 
value of n physically possible, given two viscosities, two den- 
sities, two depths, and a given k. We will therefore investigate 
some special cases. 

Finite h• and h•. with large viscosities. Equation (B 16) reads, 
when q coth qh - k coth kh = (n/2vk) (coth kh - kh csch 2 kh) 
is used, 

K2 K2') (B 17) K1 ) = tZ2(sinh K2 tq (•inh K1 -- K1 -- 
where K• = 2kh• and K•. = 2kh•.. 

We note that if K•. is infinite and K• is finite (the situation 
studied in detail in this paper), there is no finite nonzero ratio 
of viscosities that satisfies (B 17). This discovery reinforces our 
calculations in the previous section, which indicated that the 
fluid always jets out of one of the layers. 

The quantitative solution of (Bl7) depends on the value of 
Kmax, but the qualitative structure is easily determined and is 
shown in Figure Bl as a function of • = #•./#•. Since the solu- 
tion (B 17) is symmetric with respect to an interchange of sub- 
scripts I and 2, only a half space is shown. 

An interesting result is that if we start with • > 1 and K• 
fixed and gradually increase K•. by increasing the depth of layer 
2, there is a reversal of the jets. Since it was shown in the 
previous section that the jets in. layer 1 must jet out of that 

•=3 

•:2 

•=1 

•.0 

10 

Fig. B1. Trajectories of values of constant e that divide regions of 
jetting out of region 1 (above the line) from regions of jetting out of 
region 2 (below the line). 
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layer as h•. -• oo, it is thus implied that the jet went into layer 1 
when h•. -- h•; i.e., the more viscous fluid would spout into the 
less viscous fluid when the depths are equal. This hypothesis is 
borne out by some crude experiments that we did. It is in the 
opposite sense of the hexagonal flows that exist in a fluid with 
variable viscosity heated from below, in which the centers of 
hexagons confain the low-viscosity fluid. The difference is ac- 
tually due to the fact that the hexagons in this problem have a 
different physical origin than the hexagons in Rayleigh-B6nard 
convection. In the former case the hexagons arise from a 
kinematic effect at the interface, which is simply a lateral con- 
vection of the interface toward upwelling or downwelling 
regions, whereas in the latter case the hexagons arise because 
they have less friction. 

Infinite h• and h:, v• -- v•.. This case was treated by Chan- 
drasekhar [1961], with the results that Kmax and nmax are func- 
tions of the density jump. We approximate the coth functions 
as being very close to 1, set q, = q•., and find that (B 16) reads 

np• np2 
= $z• -- 2k(q• -- k) $z•. -- 2k(q• -- k) 

The terms n, k, and q• can be determined from Chan- 
drasekhar's Table 46 and are of the form 

= n = 

q• = q•'= k[1 + (v•/v•)] 

where v• and v• are order I constants that are functions of the 
density difference between the two layers. When these ex- 
pressions are substituted, (B18) reads, after some simplifica- 
tion, 

•x = •e 

which is impossible. We therefore would expect jets to exist in 
this problem going either•into or out of the low-density layer, 
but the exact direction is beyond the scope of this paper. 
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