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Trace metals such as iron set primary productivity across 
much of the ocean1,2. Other metals, including zinc and 
cobalt, play more targeted physiological roles linked to spe-

cific biogeochemical cycles3,4. Much emphasis in metal biogeo-
chemistry has been placed on the identification of external supply 
mechanisms5,6. However in the case of iron, much of this supply — 
such as episodic dust plumes — may be chemically inaccessible7 
and/or biologically unavailable8. Long-standing investigations 
of nitrogen and phosphorus biogeochemistry9 established that 
internal recycling through efficient biological retention sustains 
productivity. Likewise, solubilization of elements from sinking 
particles (termed remineralization) replenishes nutrient invento-
ries at depth10, which are seasonally resupplied to surface waters 
via mixing. Here, we exploit available insights to explore the abi-
otic and biotic mechanisms that underpin internal metal cycling: 
focussing on iron as the best-characterized metal11, but drawing 
on illustrative examples for other metals. We contrast recycling 
patterns between trace- and macronutrients, and link the for-
mer to external supply mechanisms of metals to complete their 
biogeochemical cycles.

Trace metals have fundamentally different chemistry (spe-
ciation, reactivity, complexation11) than macronutrients12, and 
thus have distinctive modes of external supply and internal 
recycling, with implications for the contribution of recycling 
versus external supply in supporting productivity (that is, the f 
ratio12, see later). Additionally, macronutrients support macro-
molecular synthesis12 whereas metals drive enzymatic catalysis13. 
These distinct metabolic roles probably account for different 
taxon-specific requirements for metals14, a trend not evident for 
macronutrients15. Although some taxa target particular forms 
of macronutrients (for example, Prochlorococcus/ammonium; 
Synechococcus/nitrate16), such preferences are poorly defined for 
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metals due to uncertainties such as how metal-binding ligands 
influence bioavailability11.

We detail important advances across four specific themes: 
(1) pelagic iron retention and recycling; (2) the ratio of new to 
recycled iron and modes of supply; (3) observed versus mod-
elled mesopelagic metal remineralization; and (4) controls on 
subsurface metal remineralization. Our understanding — cata-
lysed by GEOTRACES17 — has advanced substantially from prior 
reviews18 (Supplementary Fig. 1) and we highlight insights from 
GEOTRACES process studies19,20, surveys8,21,22 and GEOTRACES-
inspired modelling23,24; along with other recent7,25,26 and prior 
(corroborative) research27,28. FeCycle II — a twelve-day quasi-
Lagrangian GEOTRACES process study19 characterized by an 
unprecedented combination of direct measurements of pelagic 
recycling19,29 and subsurface metal remineralization29,30 — serves 
to link our specific themes. 

Drivers of pelagic metal retention and recycling
Retention of externally supplied metals by abiotic and biotic 
mechanisms within surface waters is a prerequisite for internal 
cycling (see Fig. 1). External supply largely occurs over the win-
ter31, with subsequent episodic supply5,7. For example, iron is ini-
tially retained in surface waters by excess ligands, a trend evident 
across GEOTRACES sections22,32 regardless of the mode of exter-
nal supply. Spring-time biological acquisition of iron19,20 results in 
both the retention29 and loss to depth29,30 of this ‘winter reserve’ 
stock. Mechanisms including viral activity (lysis19, ligands33) 
and grazing19 internally mobilize this biologically retained iron. 
Abiotic mechanisms play a key role in retaining episodically sup-
plied iron: from dust deposition5 (or passing eddies7) through 
rapid ‘cascades’ between particulate and soluble forms7, photo-
chemically mediated dissolution of colloids34 and the putative 
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mechanism of transformation to inorganic iron colloids21 (Fig. 1). 
Different supply modes influence taxon-specific biological acqui-
sition strategies: episodic supply can stimulate microbial sidero-
phore production25,26, whereas aerosols are transformed by 
phagotrophy35 and/or active transport (diazotrophs36), and ver-
tical diffusive supply (potentially colloidal iron7) is targeted by 
phytoplankton at depth37.

A major advance in understanding pelagic internal cycling 
(Supplementary Fig. 1) is determining how the biological ferrous 
wheel38 is structured by the intersection of taxon-specific iron 
requirements39 (such as quotas, total intracellular metal, mol per 
cell) and storage abilities40, with distinct taxon-specific pathways 
and ‘fates’ of the biologically retained metal (such as grazing/lysis/
sinking/cell death)29 (Fig. 1). Hence, the wide-ranging acquisition 
strategies employed by phytoplankton41 drive differences in the 
retention and recycling efficiency of each element. Other metals 
such as nickel have differing characteristics from iron that influ-
ence distinct physiological needs and acquisition (Supplementary 
Table 1). This range of acquisition mechanisms enables taxa with 
different metal requirements that arise from specific metabolic 
needs13,39 (such as use-efficiencies42 and/or cell sizes/abundances29) 
to coexist. A critical unknown is how abiotic and biotic retention 
mechanisms interact (Fig.  1). Although there have been major 
advances in elucidating abiotic7,21,34 and biotic25,26,29,33 retentive 

mechanisms, our understanding of the latter is more advanced. 
Ligands25,26,33 may be a key linkage between mechanisms (Fig. 1), 
however additional pathways will probably connect abiotic and 
biotic processes, an emerging theme across geomicrobiology43.

What proportion of ‘new’ trace metal inventories can be 
retained by biota? During FeCycle II19, mixed-layer dissolved 
iron decreased from roughly 0.5  to 0.1 nmol l–1, but the biotic 
iron inventory — based on quotas quantified with synchro-
tron X-ray fluorescence (SXRF) cell-mapping8,30 — remained at 
approximately 0.1 nmol l–1 throughout and its rapid recycling 
extended seasonal productivity19. This study19 suggests limits 
on the proportion of metal inventories that biota can access and 
recycle, which are probably constrained by temperature-depend-
ent bounds on the growth/grazing rate and/or lags in preda-
tor–prey couplings (for example, the gut passage). Moreover, 
not all of the dissolved metal inventories may be available to  
all taxa29.

New versus recycled metals and ocean productivity
The fe ratio describes the contribution of externally supplied iron 
to biological uptake relative to that supported by both externally 
supplied and internally cycled iron44 and hence is analogous 
to the f ratio for nitrogen12. Calculation of the fe ratio requires 
detailed estimates of both biological iron demand and recycling 
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Figure 1 | Schematic of modes of ‘new’ iron supply (orange arrows) and iron retention mechanisms within the surface mixed layer. Abiotic retention 
(left box) includes rapid transfer of aerosol iron to soluble pools (that is, Cascade7) and photochemically mediated colloid dissolution34. Biotic retention 
(right box) is driven by acquisition (for example, aerosol capture by diazotrophs36) and interactions between iron supply, differing iron quotas (pmol l–1) 
within natural communities (left-to-right: diatom39, autotrophic flagellate39, picoprokaryote39, picoeukaryote39, heterotrophic bacterium39) and their fate 
(export (downward blue arrow) or grazing/lysis (circular blue arrows)). Microbial ligand (L) release retains metals in solution (denoted by the partial 
chemical structure of the enterobactin siderophore) and is stimulated by new metal supply25,26. The virus represents putative iron recycling through 
progeny phages33. Horizontal blue arrows denote exchange between the dissolved and other pools mediated by ligands.
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(Supplementary Fig.  1). Emerging datasets from GEOTRACES 
process studies19,20 enable the relationship between the fe ratio 
and different modes of supply to be probed (Fig.  2). Initial fe 
ratio estimates were from subantarctic low-iron waters where — 
despite invariant dissolved iron vertical profiles — approximately 
90% of productivity was fuelled by internal cycling44.

A major advance is the recognition that fe ratios change with 
locale, season and regional inventories (Supplementary Fig.  1). 
Recycled iron is less important in high-iron waters sustained by 
upwelling20,45 compared with that supplied by transient winter-
reserves (Fig. 2a,b). fe ratios of ~1 were evident off the Kerguelen 
Islands at the onset of the diatom bloom20, and were approxi-
mately 0.5 after more than one month of bloom development45.   
In contrast, subtropical Pacific waters29 revealed rapid removal of 
externally supplied iron (that is, decreased fe ratios) during the 
transition to summer oligotrophy (Fig. 2b). 

Summer iron stocks are enhanced in subtropical Atlantic and 
Pacific waters via episodic dust inputs (Fig.  2c). Sustained high 
iron7,28 suggests either a biological surfeit (that is, indicative of 
high fe ratios, no available data) or that this iron is chemically inac-
tive7,8 or biologically inaccessible8 due to light and/or phosphate 
limitation2. Despite regional differences in dissolved iron stocks 
and fe ratios (Fig. 2), surprising uniformity in biotic iron invento-
ries emerges across contrasting sites29. This raises some questions: 
can recycled iron (supplying 50–90% of demand) subsidize cells 
with high requirements (for example, picoprokaryotes39)? And if 

some taxa target episodically supplied iron (Fig.  1), do others 
focus on recycled forms? If so, does iron speciation dictate such 
taxon specialization? 

Subsurface remineralization length scales
Sinking particles fuel the biological pump, and transformations 
attenuate particle flux with depth, replenishing dissolved nutri-
ents10 and setting nutricline depths31. Remineralization length 
scales — that is, the attenuation (at some rate k (s–1)) of the down-
ward particulate flux of an element settling gravitationally (speed 
ω (m s–1) is defined by ω K−1 (m)) — vary among major elements, 
causing vertical decoupling at depth10. Length scales also vary 
between metals (Table  1). Remineralization length scales are 
generally longer for metals, relative to macronutrients27, as met-
als comprise both lithogenic (relatively refractory) and biogenic 
(labile) components of sinking heterogeneous particles (Fig.  3). 
Indeed, for copper, the sinking flux is essentially a ‘lithogenic 
throughput’ with little flux attenuation (Supplementary Table 1). 
Hence, directly comparing remineralization length scales between 
elements in heterogeneous particles is problematic.

A study targeting export from a diatom-dominated bloom30 
circumvented the lithogenic influence on remineralization by 
focusing analytically on diatoms. Two-dimensional elemental 
maps of the dominant diatom species revealed depth-depend-
ent elemental shifts in the cellular and structural components 
(Supplementary Fig. 2a; Fig. 3a). Significant differences between 
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Figure 2 | Influence of different supply modes on surface mixed-layer iron (black) and the ratio of new versus recycled iron (red). a, Iron is mainly 
delivered to Kerguelen20,45 from sustained deep-water supply (the blue arrow denotes estimated duration). b, Seasonally oligotrophic subtropical 
waters19 from wintertime offshore lateral supply (blue arrow). c, Oligotrophic subtropical waters (Bermuda28, black; Hawaii7, green (2012 data set) 
and blue (2013) diamonds) from episodic dust supply (brown arrows). No fe ratio estimates were available. d, Low-iron subantarctic waters44 during 
spring–summer aerosol deposition (days 250–100). In panels a and b observations were extrapolated (blue lines) based on projected seasonality in 
dissolved iron inventories23.
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remineralization of major elements (for example, sulfur and sil-
icon) and between trace elements (for example, iron and zinc) 
emerged (Table 1). Such studies27,30 use the power of spatial asso-
ciations between elements in individual particles to explore if 
remineralization patterns are coupled (Supplementary Fig. 2a,b). 
Spatial co-location between major elements was evident in surface 
waters only, indicative of selective remineralization and decou-
pling in the breakdown of major and trace elements with depth30. 
These advances provide the detailed mechanisms needed to better 
understand basin-scale cycling of major and trace elements using 
global ocean models (Supplementary Fig. 1).

Observed remineralization length scales are compared with 
state-of-the-art model simulations23 in Table 2. PISCES23 reflects 
observed trends in remineralization (carbon/phosphorus length 
scales < iron < silicon), but simulates a shorter length scale glob-
ally for iron than is observed (Table 2). As iron remineralization in 
all current models23,24 is tied to phosphorus, the roughly twofold 
longer remineralization length scale for iron versus phosphorus 
arises in  silico from additional scavenging and colloidal pump-
ing of remineralized iron onto particles. Observations suggest 
that models underestimate iron remineralization length scales by 
four- to tenfold (Tables 1 and 2), affecting projections of nutri-
ent resupply stoichiometry and ferricline depth31 (Supplementary 
Table 1). Future models must consider additional factors includ-
ing distinct particulate pools (for example, biogenic/lithogenic) 
in setting remineralization length scales.

Subsurface controls on metal remineralization
A better understanding of why element nutriclines vary31 requires 
mechanisms to decouple remineralization (Supplementary 
Table  1). For macronutrients, mechanisms include preferential 
microbially mediated nitrogen remineralization (compared to 
carbon) to meet nutritional requirements46. Element associations 
with different cellular components (for example, membranes) 
probably influence their targeted regeneration by substrate-spe-
cific bacterial enzymes (Fig. 3a). For sinking diatoms30, more cel-
lular P/Ni/Zn/S was remineralized compared to iron (suggesting 
re-adsorption due to iron’s high particle reactivity47) and silicon 
(no bacterial demand means dissolution requires prior carbon 

solubilization48) by 200  m. This study30 provides novel link-
ages between elements, their biochemical role, cellular location, 
metal-specific microbial enzymes, and hence differential, targeted 
remineralization (Supplementary Figs 1,2). 

Heterogeneous particles often dominate the sinking assem-
blage but are difficult to study individually (Supplementary 
Fig. 2b,c). Figure 3 offers a conceptual approach to jointly consider 
disparate biotic/abiotic mechanisms (with parallels in geomicro-
biology43) used independently to derive chemical49 or biological50 
rate constants for particle breakdown. The fates of particulate 
biogenic iron, zinc and phosphorus diverge (Fig. 3) because they 
each may encounter a range of different biological (solubilization) 
and physical ((dis)aggregation) transformation mechanisms — 
iron, for example, probably sorbs onto (that is, scavenged) and 
desorbs from particles47,49. Moreover, once desorbed, iron can be 
re-sorbed onto particles49 and/or consumed (for example, by par-
ticle-attached bacteria). It is also highly probably that abiotically 
scavenged iron can be remobilized by particle-associated grazers 
(see Supplementary Movie; Fig. 3), illustrating how abiotic/biotic 
transformations interact43. This combination of abiotic and biotic 
processes, along with the refractory nature of lithogenic iron8 
(Supplementary Fig. 2b) help explain why iron often has longer 
remineralization length scales than other elements. As many 
processes jointly set remineralization length scales of different 
elements, incorporating this level of detail into biogeochemical 
models to more accurately simulate the stoichiometry of nutrient 
supply is a major future challenge.

Teasing apart abiotic and biotic transformations
Advances in understanding internal cycling and remineralization 
indicate that bioactive metals are characterized by more complex 
transformations than for major elements. Hence, elucidating 
the individual and interactive effects of biological and chemical 
transformations on cycling and remineralization represents a 
major challenge. In surface waters, a key goal is to differentiate 
the roles of phytoplankton and microbes (such as their differing 
metal quotas and fates), and the function of ligands in setting the 
taxon-specific bioavailability and/or kinetic constraints on the 
specific acquisition pathways for recycled versus ‘new’ metals. 

Table 1 | Synthesis of remineralization length scales of trace metals and major elements in the ocean.

Element b value Relative difference 
(scaled to POC)

Regeneration 
processes and factors

Particle assemblage Region 

N 1.68 + 0.13 1.34 R, [O], Re All NPSG27

POC 1.25 + 0.09 1 R, [O], M All NPSG

C* 1.09 + 0.60 1 R, [O], M Diatoms New Zealand (S. Pacific)30

P 0.88 + 0.48 0.70 R All NPSG

P 0.63 + 0.28 0.58 R Diatoms S. Pacific

BSi 0.22 + 0.53 0.18 R, OC All NPSG

Si 0.12 + 0.11 0.11 R, OC Diatoms S. Pacific

Zn 0.77 + 0.34 0.70 R, Cx? Diatoms S. Pacific

Ni 0.90 + 0.76 0.83 R Diatoms S. Pacific

Al 0.52 + 0.29 0.42 R, S All NPSG

Fe 0.32 + 0.28 0.07 R, S, Re, Cx All NPSG

Fe 0.13 + 0.17 0.12 R, S, Re, Cx Diatoms S. Pacific

Cu 0.09 + 0.38 0.07 R, S?, Re? All NPSG

Length scales are expressed as (positive) b values (that is, higher values denote shorter length scales) using power-law fitting of the vertical attenuation in particle flux50. Values are from observed sinking flux of 
all particles: that is, lithogenic/biogenic (150–500 m depth)27; and diatoms (50–200 m)30. *S as a C proxy. POC, particulate organic carbon; Cx, complexation; BSi, biogenic silica; R, remineralization; [O], oxygen 
concentration; Re, redox state; M, molecular lability; S, scavenging/sorption; OC, organic coatings; NPSG, North Pacific subtropical gyre. The question marks denote uncertainties.
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These processes set the degree of metal retention and recycling 
(versus export). Research into iron is most advanced, but we con-
tend that this cannot be used as a biogeochemical template for 
all trace metals. Other metals, often with different characteris-
tics linked with unique biochemical roles8,13 and taxon-specific 
needs39, require dedicated study and modelling. 

At depth, mixed lithogenic/biogenic particle populations and 
their varying degrees of metal remobilization, pose a major chal-
lenge to determine whether sinking particles mainly represent a 
throughput of metals to depth or a vector for the replenishment 
of dissolved metal inventories (in conjunction with the essen-
tial resupply of ligands that retain the metals in solution17). The 
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Figure 3 | Mechanisms that set the different remineralization length scales evident for trace metals and major elements. a, Hypothetical 
remineralization mechanisms for a sinking diatom (six-sided polygon) based on SXRF element mapping30 (S is a C proxy30,39). Preferential subsurface 
regeneration of elements is linked to their association with structural/biochemical cellular components (for example, membranes) and microbial 
elemental requirements (circles). b,c, Idealized processes acting on sinking heterogeneous particles (lithogenic/biogenic components with different 
labilities). Particle transformations drive remineralization (b, highlighted terms are metal specific) and depth-dependent changes in particle 
aggregate surface area (c, bio-optical profiling float data, courtesy of George Jackson), which influences local chemistry and microbial processes (see 
Supplementary Movie).

Table 2 | Synthesis of modelled remineralization length scales of trace metals and major elements in the ocean.

Element b value Relative difference  
(scaled to POC)

Regeneration  
processes and factors

Particle assemblage Region 

POC 1.65 + 0.57 1 R, [O] All Global ocean > 1000 m depth

POP* 1.65 + 0.57 1 R, [O] All Global ocean > 1000 m depth

BSi 0.24 + 0.05 0.15 R All Global ocean > 1000 m depth

PFe 0.88 + 0.32 0.53 R, [O], S All Global ocean > 1000 m depth

Length scales are expressed as (positive) b values (that is, higher values denote shorter length scales) using power-law fitting of the vertical attenuation in particle flux50. Remineralization length scales from 
biogeochemical simulations (100–1000 m) using PISCES23. *POC and POP are interchangeable in model runs. POC, particulate organic carbon; POP, particulate organic phosphorus; BSi, biogenic silica; PFe, 
particulate iron; R, remineralization; [O], oxygen concentration; S, scavenging/sorption.
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specific fate of elements within particles also influences the cou-
pling between major and trace elements. Elemental and isotopic 
mapping of particles — along with biogeochemical models — are 
powerful approaches to tease apart this puzzle. However, models 
currently focus on large scales24, limiting their utility in explor-
ing underlying biogeochemical processes in detail. We advocate a 
parallel approach, whereby the next generation of biogeochemi-
cal models are used within simplified physical oceanographic 
frameworks to develop new representations of metal cycling 
and assess the biogeochemical significance of these complex 
transformations. Models would then reflect both the progress in 
understanding external sources of metals5,6, their biogeochemical 
cycling and the associated return pathways — encapsulated by the 
term remineralization — in the oceans’ interior. 

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available in the online 
version of the paper.
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Methods
Collection of aggregate image (displayed in Supplementary Fig. 2c). The 
aggregate was collected from 15 m depth in eastern Long Island Sound using 
an acid-washed GO-FLO bottle. Particulate aggregates in whole water were set-
tled by gravity into small centrifuge tubes and frozen at −20 °C. Samples were 
subsequently thawed, and particles gently collected onto acid-washed 10 μm 

pore-sized polycarbonate Isopore membrane filters (Millipore). Unrinsed filters 
were frozen at −20 °C prior to freeze drying for 24 h. Aggregates were analysed 
with synchrotron X-ray fluorescence (SXRF) microscopy at GEOCARS beam-
line 13IDE at Advanced Photon Source. Samples were held in a He environment 
and scanned with 10.5 keV incident X-rays focused to approximately 2 μm spot 
with Kirkpatrick-Baez mirrors. A dwell time of 200 msec at each pixel was used.
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