Phosphorus and iron cycling in deep saprolite, Luquillo Mountains, Puerto Rico

Heather L. Buss a,⁎, Ryan Mathur b, Arthur F. White a, Susan L. Brantley c

a U.S. Geological Survey, 345 Middlefield Rd., MS 420, Menlo Park, CA 94040, United States
b Department of Geology, Juniata College, Huntingdon, PA 16652, United States
c Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, United States

A R T I C L E I N F O

Article history:
Accepted 3 August 2009

Keywords:
Phosphorus
Iron isotopes
Saprolite
Apatite weathering rate
Fe(II)-oxidizing bacteria

A B S T R A C T

Rapid weathering and erosion rates in mountainous tropical watersheds lead to highly variable soil and saprolite thicknesses which in turn impact nutrient fluxes and biological populations. In the Luquillo Mountains of Puerto Rico, a 5-m thick saprolite contains high microorganism densities at the surface and in shallower depths (Lugolobi et al., 2006). Deeper saprolite microbial communities are therefore highly dependent upon weathering bedrock for nutrients (Buss et al., 2005). In the deep saprolite of the Rio Icacos watershed of the Luquillo Mountains, most water that reaches the soil moves through the shallow soil layers and the water that does infiltrate to the deep saprolite on the ridges does so slowly: 1.8–2.6 m year−1 (Turner, 2001). Established tropical forests are typically characterized by a closed nutrient cycle in which nutrients are tightly cycled within the surface soil and biomass because the underlying substrates are highly weathered and thus nutrient poor (e.g., Bruijnzeel, 1991). The majority of nutrients in precipitation and dry deposition in the Rio Icacos watershed are likely rapidly scavenged by the abundant tropical vegetation and soil organisms, leaving little to infiltrate to subsurface communities, as evidenced by very low DOC concentrations in the deep saprolite porewaters (Murphy, 1995). Indeed, tracers such as Sr and Si isotope ratios and Si/Ge ratios indicate that while vegetation and porewaters in the soil and shallow saprolite of the Rio Icacos watershed contain atmospherically derived elements, middle and deep saprolite porewaters (collected from nested suction water samplers) are dominated by elements derived from bedrock weathering (Kurtz and Derry, 2004; Ziegler et al., 2005; Pett-Ridge et al., 2009; Lugolobi et al., 2006). Furthermore, the majority of the annual precipitation falls as short, intense storm events during which runoff to the streams occurs through the shallow saprolite only (Lugolobi et al., 2006). Deeper saprolite microbial communities are therefore highly dependent upon weathering bedrock for nutrients (Buss et al., 2005). In the deep saprolite of the Rio Icacos watershed, cell densities increase near the bedrock–saprolite interface where Fe(II)-oxidizing bacteria were detected. Maximum growth rates were estimated for these chemolithoautotrophic microorganisms and for their dependent heterotrophic communities based on the rate of release of Fe(II) from silicate minerals during weathering at the bedrock–saprolite interface (Buss et al., 2005). In Buss et al. (2005), cell densities (live + dead) in the

1. Introduction

Except where recent landslides have occurred, thick saprolites in the Luquillo Mountains isolate the weathering bedrock from the soil ecosystem. Despite high precipitation (>4000 mm year−1) in the Rio Icacos watershed of the Luquillo Mountains, most water that reaches the soil moves through the shallow soil layers and the water that does infiltrate to the deep saprolite on the ridges does so slowly: 1.8–2.6 m year−1 (Turner, 2001). Established tropical forests are typically characterized by a closed nutrient cycle in which nutrients are tightly cycled within the surface soil and biomass because the underlying substrates are highly weathered and thus nutrient poor (e.g., Bruijnzeel, 1991). The majority of nutrients in precipitation and dry deposition in the Rio Icacos watershed are likely rapidly scavenged by the abundant tropical vegetation and soil organisms, leaving little to infiltrate to subsurface communities, as evidenced by

⁎ Corresponding author. Tel.: +1 650 329 4420; fax: +1 650 329 4538. E-mail address: hlbuss@usgs.gov (H.L. Buss).
saprrole were estimated by direct counting and from DNA yields. The activity of the microorganisms was not examined and it is possible that the organisms present at depth were merely dormant due to P-limitation. In this paper, we compare P fluxes and P requirements to growth rates based on Fe(II) fluxes to test whether the community at depth in these samples was nutrient (P)-limited or energy (Fe(II))-limited. We also use Fe isotopes to examine the activity of Fe-cycling microorganisms in the saprrole profile.

Phosphorus is an essential macronutrient, vital to all biological systems. Adenosine triphosphate (ATP), one of the most important and abundant biomolecules in nature, is formed during photosynthesis and cellular respiration and functions as an energy shuttle, providing chemical energy for biosynthesis, cell motility, and osmotic transport of molecules through cell membranes (Garrett and Grisham, 1999). Phosphorus is found in DNA and RNA as phosphate ester bridges that link individual nucleotides, in cell membranes as phospholipids, and as a component of many signaling molecules, enzymes, and coenzymes (Frausto da Silva and Williams, 1991; Garrett and Grisham, 1999). However, P availability is commonly very low in tropical soils, a fact that is often attributed to the strong sorption of P to Fe and Al oxides (e.g., Sanchez, 1976; Vitousek, 1984; Olander and Vitousek, 2005). In contrast, tropical soils are typically not N-limited (e.g., Vitousek and Sanford, 1986). In the tropical Luquillo Mountains of northeastern Puerto Rico, low rates of NO3-leaching and export (McDowell and Asbury, 1994) result primarily from effective N retention via dissimilatory nitrate reduction to ammonium (Templer et al., 2008). High rates of NH4-production via rapid decomposition of soil organic matter also contribute to N availability and retention in tropical soils (Vitousek and Sanford, 1986). In saprrole porewaters in the Rio Icacos watershed, N concentrations increase with depth on both ridgetops and slopes (White et al., 1998) suggesting that, like soils, deep saprrole is also not N-limited. It is interesting to note that of the two elements that are most often limiting in terrestrial systems, N and P, only P comes directly from rocks (Wardle et al., 2004).

Pools of P in a forest soil may include primary minerals (predominantly apatite), secondary minerals (associated with Fe or Al oxides or clays), aqueous species in porewaters (inorganic or organic complexes), and solid organic P (contained in biomass and other organic matter). External sources of P to a soil system include bedrock weathering and atmospheric deposition (precipitation and dust). Most of the P associated with secondary minerals, biomass, and organic matter represent internal sources of P that are recycled and transferred between pools on various timescales during the lifetime of an ecosystem. In most soil profiles, P is supplied into the system almost entirely by weathering due to low atmospheric input of P (Walker and Syers, 1976). However, Caribbean island soils receive significant nutrient inputs from African dust and volcanic ash (Graham and Duce, 1982; Heartst-Scalley et al., 2007; Muhs et al., 2007). Thick, highly weathered saprolites on the ridges of the Luquillo Mountains of Puerto Rico effectively isolate surface soils from weathering bedrock (e.g., Buss et al., 2005), thus atmospheric deposition may dominate exogenous input of P to the ridgetop soils (Pett-Ridge, 2009). In contrast, mineral weathering is expected to dominate P input to deep saprrole or where saprrole is thin due to topography or erosion. Landslides, which are the dominant mechanism of erosion in the Luquillo Mountains (Simon et al., 1990), increase access to mineral-derived nutrients, notably apatite, which affects the rate of vegetation re-growth on landslide scars (e.g., Zarin and Johnson, 1995; Frizano et al., 2002).

Stable Fe isotopes provide a promising new tool for tracing biogeochemical Fe cycles in soils and weathering systems. Iron isotope systematics have been studied for multiple processes that are relevant to soil systems including i) inorganic dissolution (‘mobilization of Fe from minerals by H+’), ii) organic dissolution (mobilization of Fe by organic ligands or microorganisms), iii) reductive dissolution (‘reduction of mineral-bound Fe(III) followed by mobilization of Fe(II)’), iv) precipitation of Fe(III)-(hydr)oxides from solution, v) adsorption of Fe onto oxide or clay minerals, and vi) uptake of Fe by plants or microorganisms. Fractionations favoring the release of the light isotope (54Fe) to solution leaving an isotopically heavy solid (enriched in 56Fe) have been documented for organic dissolution of hornblende by bacteria, organic acids, and siderophores (Brantley et al., 2001b, 2004) and for ligand-controlled Fe relocation in soils (Wiederheld et al., 2007b). Organic dissolution of goethite did not produce an isotopic fractionation (Brantley et al., 2004), nor did inorganic dissolution of hornblende or goethite (Brantley et al., 2001b, 2004). Reductive dissolution of goethite, hematite, and ferrihydrite in the presence of bacteria generates a solution that is isotopically light with respect to the starting mineral (e.g., Beard et al., 1999, 2003; Icpolini et al., 2004; Crosby et al., 2005, 2007), which leads to a loss of isotopically light Fe from soils (Thompson et al., 2007; Wiederheld et al., 2007b). However, fractionation may occur via isotopic exchange between aqueous Fe(II) and sorbed Fe(II), rather than during reductive dissolution, because adsorption of Fe(II) onto goethite preferentially removes 56Fe from solution, with or without bacteria (Brantley et al., 2004; Icpolini et al., 2004). Similarly, precipitation of ferrihydrite also concentrates the heavier isotope in a solid product while the solution becomes isotopically lighter (Bullen et al., 2001; Teutsch et al., 2005). Plants that obtain Fe by acidifying the rhizosphere to promote reductive dissolution of Fe(III)-oxides preferentially take up Fe that is isotopically lighter relative to the surrounding soil (Guelke and Von Blankenburg, 2007). In contrast, uptake of Fe(III)-sidephore complexes does not result in a fractionation of Fe in grasses that produce phytosiderophores (Guelke and Von Blankenburg, 2007). Here we use Fe isotope ratios to investigate controls on the bioavailable fraction of Fe. Iron isotopes are measured in the fraction of Fe liberated from soil and saprolite samples by a dilute HCl leach, which is often associated with the most reactive, or bioavailable, fraction of Fe in soils and sediments (e.g., Fantle and DePaolo, 2004; Buss et al., 2005; Severmann et al., 2006; Wiederheld et al., 2007b). In addition to colloid-bound Fe, organic-bound Fe, and the (typically minute) aqueous Fe(II), it is this “reactive Fe” that is transported from weathering profiles to rivers and oceans and dominates the Fe isotope signatures of these bodies of water (Fantle and DePaolo, 2004). In high silicate soils, Fe within this reactive pool is expected to be isotopically light relative to bedrock and residual material (Fantle and DePaolo, 2004; Wiederheld et al., 2007b), which may indicate active biogeochemical cycling of Fe. For example, complexation of Fe by organic ligands or reductive dissolution of Fe(III)-(hydr)oxides would cause an excursion towards a lighter Fe isotope signature within the reactive Fe pool, while Fe uptake by vegetation would likely yield a heavier Fe isotope signature (Fantle and DePaolo, 2004; Wiederheld et al., 2006, 2007a,b). In soils or regolith where the residual (non-HCl-extractable) Fe is dominated by Fe(III)-hydroxides, isotopic distinction between the two pools may be less than in silicate soils due to rapid isotopic exchange between sorbed Fe(II) and Fe(III)-hydroxides (Pedersen et al., 2005). Here we test the hypothesis that HCl-extractable Fe will be isotopically light in the biologically active zones of the Rio Icacos weathering profile, relative to zones in which biological activity is suppressed due to limited nutrient and energy fluxes.

2. Methods

2.1. Field site and sample collection

The Rio Icacos watershed in the Luquillo Experimental Forest of northeastern Puerto Rico is predominantly located in a lower montane wet tropical forest that receives over 4000 mm of rain annually. The watershed is underlain by the Rio Blanco quartz diorite bedrock.
bedrock, which weathers spheroidally resulting in rounded cores-
tones of about 2 m in diameter, surrounded by 0.2–2–m thick zones of
concentric, partially weathered rock layers called rindlets (Turner et al., 2003; Buss et al., 2004; Buss et al., 2005; Fletcher et al., 2006; Buss et al., 2008). The rindlet zones are mantled by 200 ka regolith, dated using 10Be (Brown et al., 1995), and is comprised of 2–8 m of saprolite and 0.5–1 m of highly weathered Picacho-Ciales complex soils, previously classified as Ultisols (Boccheciaiampi et al., 1977), but now considered Inceptisols due to weak B horizon development (USDA NRCS, 2002).

Two 5.7 cm diameter cores of soil and saprolite were collected 1 m apart by hand augering to 7.5 m and 5.0 m depth at the top of the Guaba Ridge in the Rio Icacos watershed (latitude 18°16.903′N, longitude 65°47.418′W), which has been mapped by others (Murphy et al., 1998; White et al., 1998; Turner et al., 2003; Buss et al., 2008). Samples were taken from the auger at 0.15–0.3 m depth intervals. The deeper core penetrated the rindlet zone below 5 m depth. The sampling procedure was described by Buss et al. (2005a). Redox-
imorphic features such as gleying or motting were not observed in the saprolite samples, but several zones of pink and black Mn-oxide concentrations were identified (Buss et al., 2005). The saprolite is formed on a cuchillo, or knife-edge ridge, and is not significantly influenced by lateral flow of groundwater at depth (White et al., 1998; Lugolobi et al., 2006). The pH of the soil and saprolite porewater is 4.0–5.4 (White et al., 1998). The edge of a corestone and the complete 49 cm section of rindlets above the corestone were sampled at a nearby road cut exposed on Route 191 (latitude 18°16.216′N, longitude 65°47.055′W), preserving the position and orientation of the individual rindlets as described by Buss et al. (2008). The corestone was located beneath about 2 m of saprolite forming a small local topographic high.

2.2. Phosphorus and apatite analyses

Phosphorus was measured by inductively coupled plasma atomic emission spectrometry (ICP-AES) after lithium metaborate fusion digestion (SGS Mineral Laboratories, Ontario, Canada) of pulverized (150 μm) corestone, rindlet, and saprolite samples. Apatite crystals were identified in thin sections of the corestone and rindlets using backscattered electron (BSE) imaging and energy dispersive X-ray spectrometry (EDS) on an FEI Quanta 400 SEM. Point counting of apatite crystals was performed on backscattered images using XT-Docu software (v. 3.2, Soft-Imaging System GmbH, Münster, Germany), which calculates the volume of each user-defined phase based on the backscatter grayscale value. This technique has been used to measure porosity and to point count mineral phases in weathering rocks (Dorn, 1995; Dixon et al., 2006; Buss et al., 2008).

2.3. Iron isotope analysis

Iron in soils and sediments exist in many different forms (e.g., as readily exchangeable ions; precipitated as, or bound to, oxide or hydroxide phases; bound to organic matter; in carbonates; or in silicates). These fractions are often extracted sequentially by stronger and stronger leaching procedures. Extractions are favored over total digests because only average isotope ratios of all different Fe phases are obtained from total digests. Extraction of soils and sediments with dilute HCl is expected to liberate readily exchangeable ions, adsorbed Fe, some organic-bound Fe, and poorly crystalline Fe oxides and hydroxides (Wiederhold et al., 2007b) and represent a more reactive, or bioavailable, Fe pool than the bulk solid (Emerson, 2002). Iron isotopes were measured in 0.5 N HCl extracts performed on soil and saprolite samples augered from the Guaba Ridge. Iron isotopes are not fractionated by this extraction procedure: fractionation did not occur during dissolution of goethite or hematite in 0.5 N HCl, even when dissolution was incomplete (Skulan et al., 2002; Wiederhold et al., 2006). Soil and saprolite samples were air dried and gently ground only to break up aggregates before sieving to 2 mm. Samples (0.5 g) were then combined with 10 ml 0.5 N HCl in 15 mL centrifuge tubes and agitated on an end-over-end shaker at room temperature for 17 h, followed by centrifugation at 4000 × g for 10 min (Buss et al., 2005). Supernatants were decanted, centrifuged again, and filtered to 0.4 μm (SFC- membrane syringe filter, Cole-Parmer). Concentrations of ferrous iron in the extracts were measured by ultraviolet–visible (UV/Vis) spectrophotometry as described and reported by Buss et al. (2005). Total Fe was measured by inductively coupled plasma mass spectrometry (ICP-MS) and ferric iron was calculated as the difference between total and ferrous iron concentrations, as detailed in Buss et al. (2005).

Iron was separated from other cations in the HCl extracts following a standard ion exchange column method using AG MP-1 (100–200 mesh) resin (BIORAD) as described by Brantley et al. (2004). Post-purification iron yield was measured volumetrically and found to be better than 95%. Fe isotopes were measured at Washington State University using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS, Neptune®, Thermo-Finnigan). The Fe concentration in each sample was adjusted to 3 ppm and a 3 ppm Cu standard was added to each. Sample measu-

rens were bracketed with the standard–sample–standard tech-
nique. The mass bias in each sample was corrected using the exponential law (Arnold et al., 2004) and by using the graphical techniques developed by Maréchal et al. (1999). Both methods of data reduction resulted in values that were within the reported 2σ error (+0.1‰). This error was calculated by using multiple measurements of the Fe isotope ratio of goethite throughout four weeks of analysis (sample measured 25 times). The δ54Fe (‰) values were calculated relative to the international Fe standard IRMM-014, using the following equation:

\[
\delta^{54}\text{Fe} = \left(\frac{^{56}\text{Fe}^{54}\text{Fe}}{^{56}\text{Fe}^{54}\text{Fe}} \right)_{\text{sample}} \times 1000 - 1000
\]

3. Results

To evaluate mass transfer (loss or gain of an element relative to the parent rock composition) of P in the Rio Icacos weathering profile, we calculate Ti-normalized solid-state concentrations of P, C_{\text{w}}, which may differ from the measured value, C, due to changes in density and concentrations of other elements during weathering:

\[
C_{\text{w}} = C \left(\frac{C_{\text{TPP}}}{C_{\text{TPW}}} \right)
\]

where C_{\text{TPP}} (mol kg\(^{-1}\)) is the solid-state concentration of Ti in the protolith and C_{\text{TPW}} is the solid-state concentration of Ti in the weathered material (Ti measured by ICP-AES). Open-system mass transport (e.g., Brimhall and Dietrich, 1987; Anderson et al., 2002) is quantifiable in the Rio Icacos weathering profiles because the protolith is homogenous, of uniform age, and contains a relatively inert component that persists in the weathered material (Chadwick et al., 1990). White et al. (1998) and Buss et al. (2008) identified Ti as relatively immobile in the Rio Icacos saprolite relative to the bedrock based on calculations of very low volumetric strain with respect to Ti. Volumetric strain (here the change in volume due to expansion or collapse), should be near-zero in isovolumetrically weathered material such as saprolite.

The average of five analyses from a single corestone adjacent to the rindlets sampled was used as the protolith composition for C_{\text{w}} calculations of rindlet samples (Buss et al., 2008). The deepest sample (7.24 m) obtained from the augered cores on the Guaba Ridge was
used as the protolith for calculations performed on the core samples. Ti concentrations in the bedrock vary slightly throughout the watershed (Turner et al., 2003) and thus it is appropriate to use the least weathered sample obtainable under a given weathering profile as the parent material. Normalized P concentrations (Cw) increase with increasing depth into the regolith, with a dramatic increase at the bottom of the saprolite at 5 m (Fig. 1). An increase in P at approximately 2.5 m depth corresponds to a visible, biological and chemical heterogeneity identified by Buss et al. (2005) as a “ghost rindlet.”

Dissolution of apatite within the rindlet zone is apparent in thin section as well as in the P elemental concentration profiles of the bulk materials. Loss of apatite occurs with increasing distance from the corestone–rindlet interface (Table 1). Apatite grains in the bedrock exist along grain boundaries of other minerals or as inclusions, mostly within hornblende, but also occasionally within plagioclase or primary Fe oxides. Apatite inclusions are seen to dissolve out of relatively intact crystals such as hornblende or plagioclase (Fig. 3). Phosphorus-containing secondary minerals were not detected.

Fe isotopic compositions in the HCl extracts, δ56Fe, of the soil and saprolite range from about 0 to —0.1±0.1‰ throughout most of the profile, consistent with values for igneous rocks (Beard et al., 2003). Only at the surface (above ~1.2 m depth) and in the deepest saprolite (at 4.9 m depth) did we observe distinct variation in isotopic compositions: values were observed to be as light as —0.64 and —0.40‰ in those zones respectively (Table 2, Fig. 4). These zones of lighter Fe isotope ratios correspond to zones of higher concentrations of extractable Fe, cell numbers, DNA yields, and Fe(II)-oxidizing bacteria (Buss et al., 2005; Fig. 4).

![Figure 1](image1.png)

Fig. 1. Solid-state, Ti-normalized concentrations of P, Cw, with depth in the weathering profile that was sampled by augering on a ridgetop. The dashed line denotes the bottom of the saprolite. Samples below the saprolite were inferred to be rindlet zone samples on the basis of texture, color, and chemistry. Error is the standard deviation of the measured concentrations of P for five individual samples of a single corestone. The higher concentrations at ~2.5 m correspond to a visible, biological, and chemical heterogeneity identified by Buss et al. (2005) as a “ghost rindlet.”

![Figure 2](image2.png)

Fig. 2. Solid-state, Ti-normalized concentrations of P, Cw, in the rindlet and corestone samples collected from a roadcut (open triangles). The left-hand y-axis shows the distance below the saprolite–rindlet interface. A linear fit through the roadcut data is shown, which was used as the gradient in P, b, for calculation of the apatite weathering rate and P flux (Eqs. (3) and (5)). The equation for the regression line is Y = 36.3X — 0.13, R² = 0.76. Error bars are the standard deviation of the measured concentrations of P for five individual samples of a single corestone. Solid square symbols are Cw for P in the rindlet zone portion of the augered core (Fig. 1) corresponding to the right-hand y-axis, which shows the depth in the augered core.

![Figure 3](image3.png)

Fig. 3. Backscattered electron (BSE) image of a thin section of a rindlet from about 4 cm above the corestone sampled in a roadcut. The remnants of a dissolving apatite crystal are visible within an apatite-shaped hole. While apatite weathers across the entire 49 cm rindlet zone, hornblende only weathers within 7 cm at the saprolite–rindlet interface (Buss et al., 2008). The sample in this image is below the zone of hornblende weathering and thus the hornblende crystal appears pristine.

<table>
<thead>
<tr>
<th>Distance (cm)</th>
<th>Apatiteb (vol.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.0</td>
<td>nd</td>
</tr>
<tr>
<td>48.5</td>
<td>nd</td>
</tr>
<tr>
<td>48.0</td>
<td>nd</td>
</tr>
<tr>
<td>47.5</td>
<td>0.01</td>
</tr>
<tr>
<td>33.0</td>
<td>0.14</td>
</tr>
<tr>
<td>30.0</td>
<td>nd</td>
</tr>
<tr>
<td>28.0</td>
<td>nd</td>
</tr>
<tr>
<td>21.0</td>
<td>0.20</td>
</tr>
<tr>
<td>16.0</td>
<td>0.35</td>
</tr>
<tr>
<td>8.5</td>
<td>0.38</td>
</tr>
<tr>
<td>5.0</td>
<td>0.11</td>
</tr>
<tr>
<td>4.0</td>
<td>0.36</td>
</tr>
<tr>
<td>0</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table 1

Apatite content of rindlets and corestone.

a Distance from corestone.

b Determined by point counting backscattered electron images of thin sections using image analysis software.

d = not detected.

Reference:

4. Discussion

4.1. Phosphorus flux and apatite weathering

Changes in P concentration with depth in regolith generally represent depletion profiles, biogenic profiles, or depletion–addition profiles, (or a combination) (Brantley et al., 2007, 2008). A depletion profile occurs when P-bearing minerals dissolve and P is leached from the system and a biogenic profile is created when P that is solubilized at depth is transported upward and stored in the upper soil by biological processes. A depletion–addition profile is characterized by mobilization from the upper soil layer and enrichment in lower layers. A fourth type of profile is also possible: an addition profile, if atmospheric deposition or addition of P-rich fertilizers introduces P into the system. The slope of a concentration profile provides information about the rates and mechanisms of the depletion, addition, or biological processes that control the transfer of mass (e.g., White, 2002; Brantley et al., 2008; Buss et al., 2008). In the Rio Icacos watershed, the thicknesses of the weathering profiles are maintained by a positive feedback between weathering and erosion, controlled by the infiltration of aqueous O₂ to the weathering interface (Fletcher et al., 2006). Although the regolith and rindlet zones of the roadcut and augered site differ in thickness, that the concentration profiles of P in these two locations are consistent (that the same amount of P is lost from interface-to-interface, Fig. 2) points to the same mechanism of P mass transfer in both profiles.

Phosphorus in soils exists in a variety of forms, many of which are considered to be occluded or only sparingly soluble and thus not

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>δ⁵⁶Fe (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>−0.64</td>
</tr>
<tr>
<td>0.3</td>
<td>−0.66</td>
</tr>
<tr>
<td>0.6</td>
<td>−0.55</td>
</tr>
<tr>
<td>0.9</td>
<td>−0.13</td>
</tr>
<tr>
<td>1.2</td>
<td>−0.26</td>
</tr>
<tr>
<td>2.1</td>
<td>−0.12</td>
</tr>
<tr>
<td>2.4</td>
<td>−0.08</td>
</tr>
<tr>
<td>2.4</td>
<td>−0.11</td>
</tr>
<tr>
<td>3.0</td>
<td>0.00</td>
</tr>
<tr>
<td>3.7</td>
<td>−0.11</td>
</tr>
<tr>
<td>4.3</td>
<td>−0.10</td>
</tr>
<tr>
<td>4.6</td>
<td>0.01</td>
</tr>
<tr>
<td>4.9</td>
<td>−0.40</td>
</tr>
</tbody>
</table>

Table 2
Fe isotope ratios of HCl extracts.

Fig. 4. a) Isotopic composition of Fe extracted with 0.5 N HCl from the soil and saprolite samples. Error is 2σ = 0.1‰ calculated for multiple measurements of a goethite standard. b) Fe concentrations in 0.5 N HCl extracts (Buss et al., 2005) with a linear regression through concentrations at depths below 4 m representing the gradient in extractable Fe over this zone. Error bars are smaller than most of the symbols. c) Cell numbers estimated by direct counting (Buss et al., 2005), and d) cell numbers estimated from DNA yields (Buss et al., 2005). Notice the log scale for the cell numbers in c–d. The anomalously high cell density at ~2.2 m in c corresponds to a relatively unweathered zone in the saprolite, thought to be a “ghost rindlet” (Buss et al., 2005).
readily available to biota. However, these recalcitrant and occluded pools of P (sorbed to Al and Fe oxides, trapped within soil aggregates, or contained within clays or phosphate minerals) are slowly liberated and thus can be considered bioavailable when integrating over longer (e.g., decadal) timescales (Cumming and Weinstein, 1990; Richter et al., 2006). In addition, P sequestered in Fe(III)-(hydr)oxides can be liberated on much shorter timescales by redox dissolution in environments subjected to redox fluctuations. In surface soils in the nearby Bisley Research Watersheds, also in the Luquillo Forest, periodic O2 depletion (in approximately 2 week intervals) related to high biological activity, warm temperatures, and abundant rainfall, causes redox fluctuations that lead to repeated cycles of redox dissolution and oxidative re-precipitation of Fe(III)-(hydr)oxides (Liptzin and Silver, 2009). The P released during the reductive half-cycle is immediately taken up by the biota, bypassing the “labile” P pool (NaHCO3-extractable) (Liptzin and Silver, 2009). Although the deep saprolite is not subjected to the environmental fluctuations of the surface soils, microscale redox cycling at depth remains likely. Indeed, visible Mn-oxide gradients in the saprolite that are coincident with zones of high cell densities indicate local zones of redox cycling associated with microbial growth (Buss et al., 2005).

In deep saprolite profiles such as on the Guaba Ridge, where atmospheric and recycled (e.g., leaf litter) P are not available, apatite dissolution during bedrock weathering provides a source of P for the deep microbial communities. These communities are directly dependent on the flux of P from the weathering of apatite crystals in the rindlet zone. Laboratory experiments have demonstrated the ability of microorganisms to enhance dissolution of apatite to obtain P (e.g., Welch et al., 2002; Schaperdoth et al., 2007) indicating that apatite-bound P can be considered a bioavailable form. In the Rio Icacos watershed, apatite weathers in the rindlet zone, often within rock layers where porosity is insufficient to host microorganisms (Fig. 3), thus microbial dissolution of apatite is not considered a dominant process relative to abiotic dissolution. Much of the P that is released by apatite dissolution is lost, as evidenced by the decline in P concentrations with decreasing depth (Figs. 1 and 2). Remaining P is either taken up by microorganisms or mineralized, most likely sorbed to Fe(III)-(hydr)oxides. Phosphorus-containing secondary minerals were not detected in the rindlet zone.

When the concentration of a mobile element (e.g., P) in a soil reflects dissolution without concomitant secondary mineral precipitation, it demonstrates a decrease in the solid-state concentration of C0 at depth z1 to Cw at a shallower depth z2 (White, 2002) and can be characterized as a depletion profile (Brantley et al., 2008). The slope of such a concentration–depth plot can be related to the weathering velocity, ω, or rate of advance of weathering into unaltered (parent) material, and the weathering rate, R, of the mineral supplying the mobile element. Here C0 corresponds to the solid-state concentration of the element within the parent rock and Cw is the solid-state concentration of the element in the weathered material at depth z. While such depletion profiles often show curvature (Brantley et al., 2008), they can often be fitted satisfactorily using linear regression to calculate a slope. The reaction rate R (mol m−2 s−1) for a given mineral in a weathering profile is calculated from the elemental distribution in the profile using the following expression from White (2002):

\[R = 10^{-3} \frac{1}{\varphi s b_j} \omega \]

(3)

where ϕ is the mass fraction of the mineral in the weathering material (g g−1), ν is the stoichiometric coefficient of the element in the mineral (mol mol−1), s is the specific surface area of the mineral (m2 g−1), b is the weathering gradient (m kg mol−1), and ω is the weathering velocity (m s−1), which is also known as the weathering advance rate or the regolith propagation rate. The weathering velocity is calculated as the thickness of the profile, Δz, divided by the time required to form the profile, t:

\[\omega = \frac{\Delta z}{t} \]

(4)

The methodology of White (2002) permits the calculation of solid-state reaction rates R for minerals in a weathering profile from the elemental distribution in the profile. Here we use Eq. (3) (White, 2002) to quantify a weathering rate for apatite across the rindlet zone in the Rio Icacos watershed as a function of the average weathering velocity, ω = 43 m Ma−1 (Brown et al., 1995). We consider the gradient in P across the rindlet zone (b_1 = 36.3 m kg mol−1, Fig. 2) and mineralogical parameters ϕ = 0.008 g g−1 for apatite (determined by digital point counting and converted to mass units), and ν = 3 mol P mol−1. We calculate a geometric surface area, s = 0.023 m2 g−1, by using an average grain size of 80 µm and a cubic volume (Brantley et al., 1999). The resulting rate of apatite weathering is 6.8 × 10−14 mol m−2 s−1, or log R = −13.2. This rate is several orders of magnitude slower than apatite dissolution rates measured in the laboratory (Fig. 5, Valsami-Jones et al., 1998; Welch et al., 2002; Guidry and Mackenzie, 2003), which is expected when comparing field rates to laboratory rates (White and Brantley, 2003). The only other field-based rate of apatite weathering that we are aware of is normalized to the volume of soil rather than the specific surface area of the mineral and thus cannot be directly compared (Nerat et al., 2004).

The apatite weathering profile and weathering velocity are directly related to the rate at which P is released from apatite. The flux of an element j, in terms of unit volume: \(F_j = \frac{F_j}{s} \), can be described as the rate at which apatite-derived P is supplied to the deep saprolite microbial community:

\[F_j = 10^{-3} \frac{\varphi s b_j}{\omega} \]

(5)

where j is phosphorus and ρ is the density of the weathering material, which ranges from 1.83 × 106 to 2.7 × 106 g m−3 over the rindlet zone (Buss et al., 2008). Using this range of density values yields: \(F_p = 8.6 × 10^{-9} to 1.3 × 10^{-8} mol P m^{-3} s^{-1} \). Buss et al. (2005) estimated maximum rates of microbial growth in the deepest saprolite at this site based on the flux of Fe(II) from the weathering bedrock, assuming Fe(II)-oxidizing bacteria as the dominant primary producers. These organisms are chemolithoautotrophs, that is, they use inorganic substrates for energy (e.g., Fe) and fix CO2 to create...
organic carbon (autotrophy). The calculated growth rates, β, were 6.9×10^{-8} mol biomass C m$^{-3}$ s$^{-1}$ for Fe(II)-oxidizing bacteria and 3.5×10^{-8} mol C m$^{-3}$ s$^{-1}$ for heterotrophic bacteria. These latter bacteria are dependent on the organic carbon produced by the Fe(II)-oxidizers because the dissolved organic carbon (DOC) in porewaters at these depths is extremely low: 125 μM (Murphy, 1995) and therefore the flux of DOC from the surface is insignificant relative to the flux of organic carbon produced by autotrophy: -10^{-7} vs 10^{-4} mol C m$^{-3}$ h$^{-1}$, respectively (Buss et al., 2005).

To estimate the flux of P required, F_{req} (mol P m$^{-3}$ s$^{-1}$), to maintain a given growth rate, β (mol C m$^{-3}$ s$^{-1}$), we divide the growth rate by the molar C:P ratio of the cells, X (mol mol$^{-1}$):

$$F_{\text{req}} = \frac{\beta}{X} \tag{6}$$

The molar C:P ratio measured mixed cultures of P-limited lakewater heterotrophic bacteria has been reported to lie in the range 80:1 to 100:1 (Jurgens and Gude, 1990). Other values in the literature range from 57:1 to 100:1 for several individual species of P-limited, non-marine, environmental bacteria (Jurgens and Gude, 1990). Taking a C:P ratio of 100 as a rough estimate, we can use Eq. (6) to estimate the flux of P required to support microbial growth at the rates calculated by Buss et al. (2005): $F_{\text{req}} = 6.9 \times 10^{-10}$ and 3.5×10^{-10} mol P m$^{-3}$ s$^{-1}$ for the Fe(II)-oxidizing and heterotrophic communities, respectively. These fluxes are less than the flux of P provided by apatite weathering, F_P (Eq. (5)). Phosphorus requirements vary among specific organisms and therefore we may be underestimating F_{req}, but because actual growth rates are expected to be lower than the maximum rates estimated by Buss et al. (2005), these results suggest that P is not limiting at the saprolite–bedrock interface.

4.2. Fe isotopic composition of the regolith profile

The HCl extraction is expected to liberate aqueous Fe; Fe contained within microorganisms and biofilms; and weakly sorbed, amorphous, or poorly crystalline solid Fe (Emerson, 2002; Buss et al., 2005; Wiederhold et al., 2007b). Thus we consider two general reservoirs of Fe in the weathering profile: the extractable reservoir and the non-extractable reservoir, which contains well-crystallized phases including Fe-silicates and goethite. Significant sequestration of Fe in recalcitrant organic material is unlikely because concentrations of organic C are extremely low below 1 m depth (Buss et al., 2005).

An enrichment of light Fe isotopes, such as we measured at the top and bottom of the Rio Icacos weathering profile, is created by preferential input of 54Fe to the extractable reservoir, preferential removal of 56Fe, or both. At the bottom of the saprolite, input to the reservoir of HCl-extractable Fe is dominated by complete and rapid dissolution of hornblende, which occurs only within a 7 cm zone at the rindlet–saprolite interface (Buss et al., 2008). Inorganic dissolution of hornblende does not produce a fractionation in Fe isotopes in laboratory experiments; however, dissolution of hornblende in the presence of organic acids, siderophores, or bacteria preferentially releases 56Fe via a kinetic isotope effect, producing a solution that is as much as 0.8% lighter than the mineral (Brantley et al., 2001a, 2004). Organic dissolution of hornblende is thus consistent with the enrichment in light Fe isotopes and the higher cell densities at the bedrock–saprolite interface. Although the Rio Icacos weathering profile is characterized by oxidation processes (White et al., 1998; Buss et al., 2005; Fletcher et al., 2006; Buss et al., 2008) and neither Fe (III)-reducing bacteria nor redoximorphic features (e.g., mottling) have been detected in the saprolite (Buss et al., 2005), reductive dissolution cannot be entirely ruled out. Microaerophilic, circumneutral Fe(II)-oxidizing bacteria were found in the deep saprolite (Buss et al., 2005), which implies that oxygen may be depleted at depth, possibly within microenvironments. Microscale redox cycling of Fe by bacteria has been demonstrated in circumneutral sediments (Sobolev and Roden, 2002; Roden et al., 2004). Regardless, the rapid dissolution of hornblende clearly dominates Fe input to the extractable reservoir at the bedrock–saprolite interface.

Isotopically light extractable Fe also correlates with a larger reservoir of HCl-extractable Fe and high cell densities in the top meter of the weathering profile, which comprises the soil and rooting zone. Organic dissolution of biotite (and possibly Fe-bearing dust), decomposition of isotopically light vegetation, and microbial or plant-mediated reductive dissolution of Fe(III)-(hydr)oxides may all contribute to inputs of isotopically light Fe to the HCl-extractable reservoir in the surface soil.

The higher concentration of Fe in the HCl extracts at the top and bottom of the profile relative to the middle saprolite indicates that input to the reservoir of extractable Fe is faster than output from the reservoir in these zones. Organic dissolution of hornblende by organic ligands or bacteria is substantially faster than inorganic dissolution (Kalinoekski et al., 2000; Liermann et al., 2000; Brantley et al., 2001b, 2004; Buss et al., 2007), producing a “pulse” of isotopically light Fe at the start of the hornblende weathering process. Calculations of C_{Fe} for Fe in the saprolite and rindlets (Buss et al., 2005, 2008) are approximately constant with depth, indicating that Fe is conserved within the system. Therefore, the only mechanism for removing Fe from the extractable reservoir is by sequestration within well-crystallized Fe(III)-(hydr)oxides either by re-crystallization of ferrihydrite to form goethite or hematite or possibly diffusion of sorbed Fe into the crystalline phases. The rate of crystallization is a function of the concentration of the ferrihydrite precursor, but can be affected by redox cycling and sorption processes. Repeated redox cycling of Fe has been shown to increase the crystallinity of Fe(III)-(hydr)oxides and decrease the size of the HCl-extractable Fe reservoir (Thompson et al., 2006). However, the formation of goethite can be retarded by the sorption onto ferrihydrite of organic acids including citrate and mesotartrate, simple sugars including glucose and maltose, and silicate ions (Cornell, 1987). In contrast, adsorption of Fe(II) onto ferrihydrite substantially accelerates the formation of goethite, likely because it can act as a reductant, encouraging dissolution of ferrihydrite (Yee et al., 2006). A sorbed Fe(II) atom oxidizes and precipitates as goethite, while a ferrihydrite Fe(III) atom is reduced and propagates the process. Because the heavier isotope preferentially partitions into the oxidized product during equilibrium isotope exchange between Fe(II) and Fe(III), this process could contribute to the isotopically light signature of the extractable reservoir (Icioni et al., 2004), allowing it to persist for some time after the dissolving hornblende becomes depleted in 54Fe. Although batch experiments demonstrated rapid isotopic equilibration between poorly crystalline and well-crystallized Fe(III)-(hydr)oxides when exposed to Fe(II) (Pedersen et al., 2005), such equilibration is expected to be significantly slower in the hydrologically unsaturated (vadose zone) saprolite. Unlike surface soils, the deep saprolite is not chemically or hydrologically affected by precipitation events or seasonal cycles and thus the chemical composition, moisture content, O_2 partial pressure, and reaction rates are stable over relatively long timescales in the deep saprolite (White et al., 1998), at least at the bulk sampling scale (i.e., there may be more variability within microenvironments). However, the potential for Fe isotopic transience in the HCl-extractable reservoir due to aequous Fe(II)-exchange with Fe(III)-(hydr)oxides or repeated redox cycling of Fe (Thompson et al., 2006) should be noted.

Biological activity at the bedrock–saprolite interface and in the surface soil may slow the output of Fe from the extractable reservoir by organic complexation of Fe in solution or sorption of microbial products such as organic acids or sugars onto ferrhydrite. However, once the input of Fe from hornblende dissolution (which becomes isotopically heavier as dissolution progresses) is exhausted, it is only a matter of time before the extractable Fe crystallizes into a non-extractable form, homogenizing the two isotopic pools into a single reservoir. Without the
large flux of Fe from the dissolution of hornblende (Buss et al., 2008),
active microbial communities can no longer be supported and this is
reflected in the low cell densities, extremely low extractable Fe
concentration, and near-zero δ56Fe within the middle saprolite. In
the saprolite, Fe exists within oxide minerals and biotite, which weathers
to kaolinite throughout the saprolite (Murphy et al., 1998). The very low
concentrations of HCl-extractable Fe in the middle saprolite may also
reflect a history of redox cycles at the rindlet-saprolite interface, which
can decrease the size of this pool (Thompson et al., 2006). It is also
relevant to note that redox cycling of Fe increases the bioavailability of P
(Liptzin and Silver, 2009), which is often sorbed to Fe(III)-(hydr)oxides
in soil and saprolite.

We can estimate the flux of Fe into the extractable reservoir due to
hornblende weathering using Eq. (5). The gradient, \(b_s \), in total Fe(II)
across the zone of hornblende weathering, which occurs over 7 cm at the
bedrock–rindlet interface, is
\[
b_s = 0.088 \text{ kg mol}^{-1} \ (\text{Buss et al., 2008})
\]
and
\[
\varphi = 0.063 \text{ g g}^{-1} \ (\text{White et al., 1998})
\]
and \(\rho = 1.83 \times 10^6 \text{ g m}^{-3} \) in the deep saprolite (White et al., 1998). The resulting flux, \(F_{\text{Fe}} \), is
\[
F_{\text{Fe}} = 4.5 \times 10^{-11} \text{ mol Fe m}^{-2} \text{s}^{-1}.
\]
This rate of input can be compared to the rate of output via goethite crystallization using Eq. (5) and the gradient in extractable Fe in the deep saprolite, \(b_s = 0.19 \text{ m kg mol}^{-1} \) (Fig. 4b), and \(\varphi = 0.0018 \text{ g g}^{-1} \) (Buss et al., 2005). The resulting Fe flux out, \(-F_{\text{Fe}} = 7.3 \times 10^{-8} \text{ mol Fe m}^{-2} \text{s}^{-1} \), is an order of magnitude slower than the Fe flux in due to hornblende dissolution. This result is
consistent with the observation that the extractable reservoir reaches the
isotopic value of the middle saprolite before (at ~4.6 m depth) it
reaches the concentration value of the middle saprolite (at ~4.0 m depth).

Enhanced dissolution of hornblende by organic ligands, suggested
by the isotopic and concentration gradients in extractable Fe at the
bedrock–saprolite interface, indicates an active role for biota in
chemical weathering. In addition to increasing the rate of hornblende
dissolution, organic ligands produced by microorganisms may increase the rate of other mineral weathering reactions by lowering the pH of the porefluids. Furthermore, microbial consumption of oxygen during respiration may affect the rate of spheroidal fracturing, which is thought to be controlled by the concentration of oxygen in the porewater (Fletcher et al., 2006). These results raise the possibility of a “bio-limited” weathering profile in which a change in the rate of biogeochemical weathering would lead to a change in the total denudation rate. Weathering systems are typically classified as either weathering-limited or transport-limited (Stallard, 1992; Kump et al., 2000; Riebe et al., 2004; West et al., 2005). In a weathering-limited regime, total denudation is controlled by the chemical weathering rate, which is limited by the kinetics of mineral weathering reactions. In contrast, in a transport-limited regime (also called supply-limited), the total denudation rate is controlled by the rate of erosion. In the transport-limited case, perturbations in the weathering rate do not
affect the total denudation rate because the weathering rate is high relative to the erosion rate; development of a thick regolith is a consequence. Because the Rio Icacos weathering profile is consistent with models of transport-limitation (Fletcher et al., 2006; Lebedeva et al., 2007), it is unlikely that microbial influence on the weathering rate would affect the denudation rate or the thickness of the regolith profile studied here. However, it is interesting to note that a weathering-limited profile could also be bio-limited.

5. Conclusions

Iron in HCl extracts of saprolite samples is slightly fractionated relative to igneous rocks through the majority of a saprolite profile
overlying quartz diorite in the Luquillo Mountains, Puerto Rico: d56Fe values generally range from approximately 0 to ~0.1‰. However, HCl-extractable Fe is significantly enriched in the lighter isotope in samples taken from the soil and from the bottom of the saprolite directly overlying the bedrock, where d56Fe = −0.64 and −0.40‰,
respectively. These zones of lighter Fe isotopic compositions are consistent with the zones of highest biological activity in the saprolite as measured by cell density. Whereas organisms in the soil are generally heterotrophic and can thrive on relatively abundant organic carbon in the soil and porewaters, little to no organic carbon is available at the bedrock–saprolite interface, other than cellular material. Microorganisms at the bottom of the saprolite therefore rely on Fe and P released from the spheroidally weathering bedrock as an energy and nutrient source, respectively, with Fe as the limiting “nutrient.” The bedrock–saprolite interface is characterized by
spheroidal fractures that delineate ~2.5-cm thick rindlets and that comprise ~50-cm thick rindlet sets. Apatite is present in the corestone at parent abundance, but is not measured in the saprolite: we calculate that apatite weathers across the rindlet sets at a rate of 6.8×10−14 mol m−2 s−1. Using growth yields from the literature and weathering release rates of Fe(II), biomass production rates were
calculated previously by Buss et al. (2005). The apatite dissolution rate
calculated here produces a flux of P sufficient to support these growth rates.
Therefore our results suggest that P is not limiting at the saprolite–bedrock interface. These results are consistent with the
conclusion, advanced in our earlier paper, that the ecosystem that
survives at ~5 m depth in the saprolite directly above the bedrock in the
Rio Icacos weathering profile is dependent upon chemolithoauto-
rophic primary producers. These chemolithoautotrophs are Fe(II)
oxidizers and are sustained through Fe released from the weathering bedrock. Active cycling of Fe by microorganisms is reflected in the
isotopically light Fe in the HCl extracts from the top and bottom of the
weathering profile, although the cycling and fractionation mechanisms
differ between the surface and deep ecosystems. The preferential mobilization of light Fe isotopes at the bedrock–saprolite
interface suggests that microorganisms are likely influencing concentra-
tions of Fe and oxygen in the porewater and thus affecting the rates of weathering of Fe-bearing minerals.

Acknowledgements

We thank Lisa Stillings, Aaron Thompson, Tom Bullen, and two
anonymous reviewers for thoughtful comments that improved the
manuscript. R.C. Fletcher, J. Troester, and M. Rosario-Torres for field assistance and J. Kittleson, G. Icopini, M. Angelone, G. Hart, and J.
Vervoort for laboratory and data assistance. Funding provided by DOE
grant no. DE-FG02-05ER15675, the Penn State Biogeochmical Research Initiative for Education (BRIE) supported by NSF-IGERT
grant no. DGE-9972759, and the Water Energy and Biogeochemical
Budgets Program of the U.S. Geological Survey. H.L. Buss acknowl-
dges fellowship support of the NSF Graduate Research Fellowship Program and the National Academy of Sciences Research Associate-
ship Program.

References

analysis, and rates of solute loss: linkages between weathering and erosion in a
for widespread anoxia in mid-Proterozoic oceans. Science 304 (5667), 87–90.
dissolution rates. In: Brantley, S.L., Kubicki, J.D., White, A.F. (Eds.), Kinetics of
Beard, B.L., Johnson, C.M., Skuland, J.L., Nealon, K.H., Cox, L., Sun, H., 2003. Application of
Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem. Geol. 195, 87–117.
Boccheciapeli, R.A., Rivera, W.F., Trigo, J.E., Brunet, J.E., Torres, E.O., McKinzie, W.E.,
Soil Conservation Service, Washington, D.C.
In: Jamtveit, B., Meakin, P. (Eds.), Growth and Dissolution in Geosystems. Kluwer

