Earthquake-triggered increase in sediment delivery from an active mountain belt

Simon J. Dadson
Niels Hovius
Hongey Chen
W. Brian Dade
Jiun-Chuan Lin
Mei-Ling Hsu
Ching-Weei Lin
Ming-Jame Horng
Tien-Chien Chen
John Milliman
Colin P. Stark

Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan, Republic of China
Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
Department of Geography, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan, Republic of China
Department of Earth Sciences, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, Taiwan, Republic of China
Water Resources Agency, Ministry of Economic Affairs, Hsin-Yi Road, Taipei, Taiwan, Republic of China
National Science and Technology Center for Disaster Prevention, 6F#200, Sec. 3, Hsinhai Road, Taipei, Taiwan, Republic of China
School of Marine Sciences, College of William and Mary, Gloucester Point, Virginia 23062, USA
Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA

ABSTRACT

In tectonically active mountain belts, earthquake-triggered landslides deliver large amounts of sediment to rivers. We quantify the geomorphic impact of the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, which triggered >20,000 landslides. Coseismic weakening of substrate material caused increased landsliding during subsequent typhoons. Most coseismic landslides remained confined to hillslopes. Downslope transport of sediment into the channel network occurred during later storms. The sequential processes have led to a factor-of-four increase in unit sediment concentration in rivers draining the epicentral area and increased the magnitude and frequency of hypsometric sediment delivery to the ocean. Four years after the earthquake, rates of hillslope mass wasting remain elevated in the epicentral area.

Keywords: earthquakes, landslides, typhoons, sediment supply, fluvial erosion rates, Taiwan.

INTRODUCTION

Earthquake- and storm-triggered landslides in actively deforming orogens increase the supply of sediment to rivers (Lyell, 1830; Keefer, 1994; Eberhart-Phillips et al., 2003). The decadal pattern of sediment yield from seismically active areas such as Taiwan is controlled by large earthquakes (Dadson et al., 2003). Coseismic landslide intensity is known to correlate with earthquake magnitude (Keefer, 1994), but patterns of landslide intensity around active faults and location with respect to the river network are poorly constrained. These patterns control the distribution of coseismic erosion and sediment delivery to rivers. After an earthquake, coseismic landslide debris is flushed from catchments (Pain and Bowler, 1973; Pearce and Watson, 1986), and seismically weakened rock mass may be removed from hillslopes, but these processes have not been documented in detail. We have quantified the hillslope and fluvial responses to the Mw 7.6 Chi-Chi earthquake in Taiwan by using data on ground acceleration, topography, landsliding, and fluvial sediment transport.

Taiwan is the product of oblique collision between the Luzon arc, on the Philippine Sea plate, and the Eurasian continental margin (Fig. 1A). Crustal shortening at 80 mm·yr⁻¹ (Yu et al., 1997) is accompanied by frequent large earthquakes, including the Mw 7.6 Chi-Chi earthquake in 1999. Taiwan has a subtropical climate with an average of four typhoons per year (Wu and Kuo, 1999) and mean precipitation of 2.5 m·yr⁻¹. This combination of active tectonic and climatic regimes leads to erosion rates averaging 3–7 mm·yr⁻¹ and locally up to 60 mm·yr⁻¹ (Dadson et al., 2003), driven by fluvial bedrock incision (Hartshorn et al., 2002), landsliding (Hovius et al., 2000), and debris flows (Lin et al., 2004). Average suspended-sediment discharge from Taiwan to the ocean between 1970 and 1998 was ~400 Mt·yr⁻¹ (Dadson et al., 2003).

The Mw 7.6 Chi-Chi earthquake, on 21 September 1999, was the largest in Taiwan for 50 yr and the largest on the Chelungpu thrust fault in 300–620 yr (Shin and Teng, 2001; Chen et al., 2001). The earthquake had a reverse fault mechanism, a focal depth of 8 km, and resulted from the rupture of an ~100 km segment of the north-trending, east-dipping (~30°) Chelungpu thrust. It produced ground accelerations of up to 1g (Lin et al., 2000). Geodetic observations show coseismic displacement of as much as 3 m on the fault, decreasing to zero at a distance of 20 km away from the fault (Yu et al., 2001).

Here we focus on the Choshui River basin, which drains much of the epicentral area. During 1996–2001, the following events occurred (Central Weather Bureau, 2003): (1) Typhoon Herb (August 1996), (2) Chi-Chi earthquake (September 1999), and (3) Typhoon Toraji (July 2001). Typhoon Herb occurred 80 yr after the previous Mw > 6 earthquake in the area and produced a total water discharge of 1.2 km³ over 3 days from the Choshui River (Fig. 1B). Similarly, Typhoon Toraji...
(the largest of four postearthquake typhoons) produced a total water discharge from the Choshui River of 0.8 km³ over 2 days. This typhoon-earthquake-typhoon sequence represents a natural experiment that provides quantitative information about the impact of a large earthquake on hillslope mass wasting and transfer of sediment to rivers and the ocean.

LANDSLIDE LOCATION AND INTENSITY

Field, aerial-photograph, and satellite observations following the Chi-Chi earthquake show ~20,000 soil and bedrock landslides, covering a total area of 150 km². Landslides were mapped from 20-m-resolution SPOT satellite images. This resolution means that landslides >3600 m² (3 × 3 pixels) can be mapped accurately. Omission of landslides smaller than this size may have caused significant underestimation of area disturbed. Most slope failures occurred within an ~3000 km² region bounded by the 0.2g contour of peak vertical ground acceleration (Lin et al., 2000; Fig. 1B). The area disturbed by landsliding exceeds 2% within an ~20 km zone along the Chelungpu fault (Fig. 2A). This zone includes the earthquake epicenter, 14 km east of the surface break. The decrease in area affected by landsliding away from the epicenter is characterized by an exponential function that decays to 1/e (37%) of its maximum value within 30 km (Fig. 2A).

After Typhoon Toraji, ~30,000 more landslides were mapped from SPOT images, with a total mapped landslide area of 500 km². Of the landslides triggered by the Chi-Chi earthquake, 56% were reactivated during Typhoon Toraji, while 80% of the Toraji landslides occurred in areas that had not failed during the earthquake. Moreover, the proportion of surface area disturbed by landsliding during Typhoon Toraji increased with proximity to the Chelungpu fault (Fig. 2A), suggesting that, even in areas that underwent no landsliding during the earthquake, the substrate was preconditioned to fail through loss of cohesion and frictional strength of hillslope rock mass caused by seismic strong ground motion.

Next we consider the location of landslides within the Chenyoulans River basin, a tributary of the Choshui River; the basin covers an area of 376 km², ~12 km east of the epicenter (Fig. 1B). Within the Chenyoulans catchment, 289 landslides were mapped following Typhoon Herb, 584 following the Chi-Chi earthquake, and 1903 following Typhoon Toraji. To quantify landslide location relative to the river-channel network, we calculated the drainage area, A, of the lowest point reached by each landslide (Fig. 3A). A slope-area plot (Fig. 3B) produced from a 40 m digital elevation model of the Chenyoulans catchment indicates that channelization occurs when A > 1 km². We infer that landslides reaching locations with A > 1 km² delivered sediment to channels.

Most earthquake-triggered landslides remained confined to hillslopes. Only 8% of these landslides delivered sediment to rivers. In contrast, 13% of landslides triggered by Typhoon Toraji, and 24% of landslides triggered by Typhoon Herb, delivered sediment to the channel network (Fig. 2B). This difference may reflect topographic amplification of seismic waves close to hillcrests (Geli et al., 1988). Subsequent downslope transport occurred in a cascade of sediment from hillslopes into the channel network during storm-triggered landslides and debris flows.

SUSPENDED SEDIMENT IN RIVERS

We have quantified the impact of the Chi-Chi earthquake and Typhoon Toraji on river sediment loads by using measurements of suspended-sediment discharge at 101 hydrometric stations between 21 September 1999 and the end of 2001. Water discharge was measured daily through the use of a stage recorder. Suspended-sediment concentration was measured fortnightly, through the use of a USDH-48 suspended-sediment sampler, by the Water Resources Agency of Taiwan (1970–2003). To estimate coesismic sediment supply independently of variations in transport capacity during subsequent storms, we calculated unit sediment concentration, κ, from a plot of suspended-sediment concentration and water discharge (Trustrum et al., 1999; e.g., Figs. 4A, 4B) by fitting a function of the form C = kQ^b, where C is suspended-sediment concentration (g/L) and Q is water discharge (m³/s⁻¹). The exponent b represents the strength of the relationship between Q and C and is determined by the process of sediment mo-
concentration increased after the earthquake. The ratio $D_k = k_{pre}Q^r$ was of similar size but occurred 3 yr before the Chi-Chi earthquake.

GEOLOGY, August 2004 735

Greater increases in postseismic sediment concentration were observed in several mountain catchments, such as a 4.4-fold increase in the Chenyoulan watershed (Fig. 4B). The average measured suspended-sediment discharge in the Choshui River between 1986 and 1999 (a period of relative seismic quiescence) was 54 Mt yr$^{-1}$ (Dadson et al., 2003).

We calculated the annual suspended-sediment discharge by using a rating-curve estimate, which combines a relationship between sediment concentration and water discharge for each catchment with a record of daily water-discharge data (supplemented with hourly discharge

Figure 5. A: Spatial variation of change in unit sediment concentration, ΔC, following Chi-Chi earthquake. Data from 101 catchments were smoothed using 30-km-diameter circular moving average. This length scale is median area of the catchments analyzed. Dashed lines show boundaries of named catchments. Black circles show gauging stations; open circles indicate Chi-Chi epicenter and aftershocks with $M_L > 6.0$. Blue lines are tracks of subsequent typhoons: Bilis (average discharge at Choshui River mouth, $Q_{avg} = 4850$ m3 s$^{-1}$), Xangsane ($Q_{avg} = 1810$ m3 s$^{-1}$), Toraji ($Q_{avg} = 7790$ m3 s$^{-1}$), and Nari ($Q_{avg} = 2610$ m3 s$^{-1}$). Maximum wind velocities were 105, 74, 74, and 78 knots, respectively; track is solid if wind speed is > 64 knots; dashed otherwise. B: Time series of mean unit sediment concentration for 6 month periods between 1986 and 2002 in Choshui River (gray bars). Dotted line shows typhoon season mean; dashed line shows winter mean; solid line is exponential fit to winter data (and summer 1999 when no typhoons occurred).
measurements at one station during large storms: Water Resources Agency of Taiwan, 1970–2003). This method is likely to provide a conservative estimate of the postseismic increase in sediment discharge (Cohn, 1995). The total mass removed from the Choshui River basin during the period between the Chi-Chi earthquake and the end of 2001 was 326 Mt, 175 Mt of which was removed by Typhoon Toraji over a period of 2 days. Thus, following the earthquake, average annual suspended-sediment discharge increased by a factor of 2.6 to 143 Mt yr$^{-1}$. Annual averages were 14 Mt yr$^{-1}$ (2 mm yr$^{-1}$) across the whole catchment assuming a density of 2650 kg m$^{-3}$ in 1999, a year with no typhoons; 81 Mt yr$^{-1}$ in 2000 (10 mm yr$^{-1}$, one typhoon); and 241 Mt yr$^{-1}$ in 2001 (30 mm yr$^{-1}$, three typhoons).

The time scale of the geomorphic response to the Chi-Chi earthquake is illustrated in Figure 5B, which shows the available record of averages over 6 month periods of unit sediment concentration from 1986 to 2002. The pattern of unit sediment concentration during typhoon seasons is determined by typhoon size. In contrast, the data for winter seasons (which have no typhoons) show an exponential decrease in unit suspended-sediment concentration from the elevated postearthquake value to the pre-1999 winter mean. The time for winter-season unit sediment concentration to decay to 1/e of its maximum value is 2.3 yr. This observation indicates that the alluvial and colluvial stores that deliver sediment at low flow were depleted relatively rapidly following the Chi-Chi earthquake. In contrast, hillslopes continue to deliver sediment to rivers during extreme precipitation associated with typhoons. Large quantities of sediment may remain on hillslopes, causing elevated landslide and debris-flow rates in subsequent typhoons.

Elevated postseismic sediment delivery to the coast suggests that the offshore sedimentary record may contain information on locations and recurrence intervals of past earthquakes. Hyperpycnal flows are negatively buoyant fluvial discharges caused by high concentrations of suspended sediments. On the basis of the average temperature (23–28 °C) and salinity (34%) of oceanic coastal waters around Taiwan, concentrations of 36–39 g/L will produce hyperpycnal flow (Boggs et al., 1979; Mulder and Syvitski, 1995). From hydrometric observations at the lowermost station on the Choshui River, we estimate (by using the postearthquake suspended-sediment rating curve) that 67% (up from 43%) of the 143 Mt yr$^{-1}$ annual suspended-sediment discharge from Choshui River following the Chi-Chi earthquake was delivered under conditions for which $C_s > 40$ g/L. We infer that hyperpycnal plumes were formed on at least four occasions since the earthquake, each during the typhoon season. By using the background sediment-concentration rating curve, we estimate that only one storm would have produced a hyperpycnal plume had the earthquake not occurred. Our calculations suggest that earthquake-driven geomorphic processes may have been involved.

CONCLUSIONS
The 1999 Mw 7.6 Chi-Chi earthquake has triggered at least 20,000 landslides in the Western Foothills fold-and-thrust belt of the Taiwan orogen. Cosismic landslide intensity decayed exponentially with distance from the active fault. Most of the debris from coseismic landslides has been remobilized by postseismic landslides, but most postseismic landslides have affected pristine hillslopes in a pattern that closely tracks the distribution of Chi-Chi strong ground motion. These landslides have resulted in elevated postseismic erosion rates and a cascade of sediment from hillslopes to channels. Suspended-sediment concentrations in rivers within ~40 km of the 1999 Chi-Chi earthquake are as much as four times higher than decadal background values. The total mass removed from the epicentral catchment during the period between the Chi-Chi earthquake and the end of 2001 was 326 Mt, two-thirds of which was delivered to the ocean at hyperpycnal concentrations.

ACKNOWLEDGMENTS
This work was supported by the UK Natural Environment Research Council, Faber Maunsell plc., the Taiwan National Science Council (ROC), the Royal Society, European Union funding to the RETINA project under FP5 (EVG1-CT-2001-00046), and the National Aeronautics and Space Administration (NAG5-8848). We thank D. Keefor and D. Burbank for constructive reviews.

REFERENCES CITED
Boggs, S., Wang, W.C., Lewis, E.S., and Chen, J.C., 1979, Sediment properties and water characteristics of the Taiwan shelf and slope: Acta Oceanogra-

Geli, L., Bard, P.Y., and Jullien, B., 1988, The effect of topography on earth-

Hartshorn, K., Hovius, N., Dade, W.B., and Slingerland, R.L., 2002, Climate-

Keefor, D.K., 1994, The importance of earthquake-induced landslides to long-

Water Resources Agency of Taiwan, 1970–2003, Hydrological yearbook of Tai-

Wu, C.C., and Kuo, Y.H., 1999, Typhoons affecting Taiwan: Current understand-

Manuscript received 11 March 2004
Revised manuscript received 28 April 2004
Manuscript accepted 4 May 2004
Printed in USA

736 GEOLOGY, August 2004