Are Glaciologists all Oceanographers now?

or...

Are Glaciologists coming to their senses? Are Oceanographers loosing their touch?

<u>Pierre Dutrieux</u>¹ and many, many others (who should be only credited for the correct statements I may make today...)

¹Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, USA

Photo C Maria Stenzel

18 years ice shelf thickness change [*Paolo et al*, 2015]

Near seabed water temperature [Schmitdko *et al*, 2014]

[Rignot et al, 2014]

- 1.Mean Amundsen Sea circulation and properties?
- 2.Variability of near calving front heat content?
- 3.Importance for ice discharge?
- 4.Spatial distribution of melt?
- 5.Importance for ice discharge?
- 6. A selection of remaining questions?

The Amundsen Sea

Ice shelf-Ocean interactions features, a simple 2D view;

Baroclinic circulation

Temperature distribution

Cause(s) of the 2012 anomaly?

h

2011

[Dutrieux et al., 2014]

Impact on the glacier?

Geometrical constraints on dynamics

Impact of the ridge

[Dutrieux et al, 2014]

1.5

1

12.5 10 7.5 5

15

[Dutrieux et al., 2014]

2012

⁸⁰⁰ e

Net melt volume loss rates from the main trunk:

1994: -51±7 km³/yr 2009: -80±10 km³/yr 2010: -75±10 km³/yr 2012: -37±5 km³/yr ! 2014: -65±5 km³/yr

Impact on the ice?

A detailed pattern of melt

48'

54'-

75°S -

[Dutrieux et al., 2013]

Surface elevation, BAS airborne 2011 basal elevation

A detailed pattern of melt

2009-2014 Median Melt Rate (m/yr)

[Dutrieux et al., 2013]

How about even finer scale? Shear margin crevasses

How about even finer scale? Transverse channels

How about even finer scale? Longitudinal channels

Impact on the ice?

a. Undeformed ice shelf

b. Flexing response

c. Zones of possible failure

from Vaughan et al, JGR 2012

[Shean et al., in prep]

135 120 (8002W53 W) 90 (8002W53 W) 9

150

How about even finer scale?

Terraces

Adapted from Millgate et al, 2013

Conclusions

- Ocean heat content in the Amundsen Sea varies, driven by a combination of local and remote atmospheric/sea ice forcing;
- Oceanic melting under Amundsen Sea ice shelves is:
 - highly variable in time (x2 or more over interannual timescales),
 - critically distributed at kilometre scales,
 - also largely modulated by finer scale terraces!
- Fundamental coupling between ocean and ice dynamics.

5 questions:

→ What actually controls the ocean heat content in the Amundsen Sea?

→ Role of atmospheric forcing at seasonal/interannual/decadal timescales? Role of tropical teleconnections?

→ Importance of spatial distribution of melt at kilometre scales?

 \rightarrow How are the terraces created and how important are they for the bigger picture?

→ Coupled dynamics?