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Magma genesis and transport link mantle convection with surface
volcanism and hence with the long-term chemical and morphological
evolution of the Earth crust. Modeling the dynamics of magma—
mantle interaction in lectonic sellings remains a challenge, however,
because of the complexity of multi-component thermodynamics and
melt segregation in a permeable, compactible, and actively deforming
mantle matrix. Here I describe a flexible approach to formulating the
thermochemustry of such models based on the Enthalpy Method, a
technique commonly used in simulations of alloy solidification. This
approach allows for melting and freezing based on a_familiar binary
phase diagram, consistent with conservation of energy and two-phase
compaction and flow. I present an extension of the Enthalpy Method
to more than two thermodynamic components. Sumulation of a one-
dimensional upwelling and melting column provides a benchmark for
the method. Two-dimensional simulations of the melting region that
Jeeds magma to a rapidly spreading mid-ocean ridge demonstrate the
utility of the Enthalpy Method. These calculations provide a new
estimate of the efficiency of magmatic focusing along the base of the
oceanic lithosphere. Modeled focusing efficiency varies with mantle
permeability and resistance to compaction. To yreld 5—7 km of oceanic
crust with ~20% melting of a homogeneous, sub-ridge mantle, a
Jocusing efficiency of greater than 70% is required. This, in turn,
suggests that matrix permeability and bulk viscosily are at the high
end of previously estimated values.

KEY  WORDS:  mantle;  simulation;  PETSc;  compactions
thermodynamics
INTRODUCTION

The convective dynamics of the mantle exert a primary
yet incompletely understood influence on the surface
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environment of the Earth. Mantle convection is linked to
the physical and chemical characteristics of the planet’s
surface by magma genesis and transport. This connection
affects the evolution of hotspot chains, explosive volcanoes
found above subduction zones, and tectonic seams of the
ocean floor, as well as the existence and composition
of continents. Understanding the transport of magma
through the subsurface is an essential component in our
knowledge of the Earth system.

Much previous work has focused on solid-state, creeping
convection of the whole mantle (e.g. Schubert et al., 2001)
and the origins of plate tectonics (e.g. Tackley, 2000).
Relatively less attention has focused on the interaction of
fluid magma with the permeable, crystalline mantle in the
partially molten zones beneath volcanoes. McKenzie
(1984) and subsequent studies (see references below) have
derived general equations that aim to describe the conser-
vation of mass, momentum and energy in such settings.
Solutions to these equations, plus some treatment of melt-
ing, freezing and geochemical transport, can be used to
make predictions that are testable using geophysical and
geochemical data. The set of predictions that can be made
using any formulation of the governing equations depends
on the choice of complexities included in the model.

Observations of mid-ocean ridges (MORs) pose a set of
fundamental problems in magmatic transport. Of particu-
lar interest here is the observed uniformity of crustal thick-
ness (5—7 km) for ridge full-spreading rates above 2 cm/yr.
This feature of MORs was demonstrated and modeled by
Bown & White (1994). Those researchers showed that crus-
tal thickness can be modeled by decompression melting of
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a mantle with a potential temperature between 1280 and
1320°C, assuming instantaneous, complete melt extraction.
A higher mantle potential temperature would result in a
larger melt production rate and would require less efficient
extraction, although geochemical constraints on the degree
of melting indicate that the potential temperature cannot
be significantly higher than 1350°C. This reasoning sug-
gests that melt extraction is uniformly efficient for all ocea-
nic spreading ridges.

Beneath MORs, magma is produced over a volume of
mantle that can extend to more than 100 km on either side
of the ridge axis (Forsyth et al., 1998); efficient melt extrac-
tion requires that this magma be focused laterally toward
the ridge axis. The mechanics of magmatic focusing at
mid-ocean ridges remains incompletely understood [for a
review see Kelemen et al. (1997)]. Models include flow
focusing as a result of anisotropic permeability (Phipps
Morgan, 1987; Daines & Kohlstedt, 1997; Katz et al., 2006),
pressure effects caused by mantle corner flow (Phipps
Morgan, 1987; Spiegelman & McKenzie, 1987) and channe-
lized flow along the base of the sloping thermal boundary
layer in a high-porosity ‘decompaction channel’ (Sparks &
Parmentier, 1991; Spiegelman, 1993¢). Of these, the last
remains a promising explanation for high-efficiency focus-
ing, although it has not been thoroughly investigated.
Sparks & Parmentier (1991) used a semi-analytical analysis
of the problem to derive an estimate of focusing efficiency
as a function of mantle permeability and magma viscosity.
Spiegelman (1993¢) developed two-dimensional (2D), iso-
viscous, numerical simulations of a fixed sloping boundary
with a prescribed freezing rate. The work showed that the
efficiency of focusing depends on the ratio of the crystalli-
zation-region thickness to the local compaction length. In
particular, deflection of flow into the decompaction chan-
nel occurs only if the crystallizing boundary layer is sharp
relative to the compaction length. Ghods & Arkani-
Hamed (2000) performed 2D numerical simulations of
melting, freezing and magmatic transport at a MOR to
better constrain the efficiency of focusing in a ridge setting.
Their estimates of efficiency were lower than those of
Sparks & Parmentier (1991) and those presented here.
More recently, observations of the Oman ophiolite were
interpreted by Rabinowicz & Ceulencer (2005) in terms
of the presence of a decompaction layer. That work also
described numerical simulations but did not report the effi-
ciency of focusing. The question of the efficiency of mag-
matic focusing by flow along a sloping decompaction
layer thus remains unresolved.

It is the purpose of the present paper to reconsider this
problem with the introduction of a new model that incor-
porates a flexible approach to handling the chemical ther-
modynamics of magma dynamics simulations. Model
complexity is limited to that necessary to address the phe-
nomenon in question. Melting and freezing are required,

as are melt segregation and matrix compaction
(Spiegelman, 1993¢). 1o establish a consistent ridge thermal
structure and melting budget, solution of a conservation
equation for energy is also required. This equation should
account for heat transport by the solid and fluid, latent
heat of melting or freezing, thermal diffusion, and adia-
batic temperature changes (Bown & White, 1994). To
account for the compositional dependence of mantle melt-
ing in the simplest possible way, the system should include
at least two thermochemical components such that the
melting point of a parcel of solid is at least univariant (at
a given pressure). Furthermore, the pressure dependence of
the solidus and liquidus is important for calculating the
distribution of melting (Asimow et al., 1997). Finally, to
properly calculate the compaction length, a physically con-
sistent bulk-viscosity formulation must be considered
(Schmelling, 2000; Bercovici et al., 2001). The approach
used in the present work combines the magma dynamics
formulation of Katz et al. (2007) and the Enthalpy
Method (Alexiades & Solomon, 1993). The latter has been
frequently used in simulations of solidification of binary
alloys (e.g. Oertling & Watts, 2004; Katz & Worster,
2008). This approach accommodates the minimum set of
requirements for the problem of magmatic focusing as
defined by Sparks & Parmentier (1991); it can be extended
in a straightforward manner to more complex constitutive
relations and thermodynamic systems. It is described in
detail below.

The present work builds on that of previous researchers
by incorporating thermodynamic and fluid-mechanical
complexity into a 2D, tectonic-scale model. Past work on
applications of magma dynamics theory has typically con-
sidered a simplified mechanical system with more detailed
thermochemistry, or vice versa. Details of thermody-
namics and melting have typically been included in
1D ‘melting column’ models. Ribe (19854) considered a
two-component system in thermodynamic equilibrium
prescribed by a phase diagram (full solid solution and
eutectic). Asimow & Stopler (1999) extended this theory
to account for a multi-component system with variations
in density and partial specific entropy of multiple phases,
using MELTS (Ghioroso, 1994; Ghiorso & Sack, 1995) to
resolve the thermodynamic quantities. Other melting
column models, by Sramek ¢ al. (2007) and Hewitt &
Fowler (2008), have considered only a single thermody-
namic component and have instead focused on deriving
analytical solutions to expose the relevant fluid mechanical
processes. Hewitt & Fowler (2008) considered a column
capped by a cold boundary that yielded a lithospheric
boundary layer and magmatic under-plating beneath it.

The present model adopts a level of thermodynamic
complexity equivalent to that of Ribe (1985a) but is most
closely associated with previous tectonic-scale 2D and 3D
simulations of MORs. Most of these, however, have
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neglected compaction stresses so as to reduce the momen-
tum relation for the solid to the familiar incompressible
Stokes’ equation. Spiegelman & McKenzie (1987) consid-
ered 2D, constant viscosity, constant porosity models
of ridges and arcs to investigate fluid focusing caused
by dynamic pressure gradients. Scott & Stevenson (1989)
neglected compaction stresses but allowed for variable
viscosity in 2D numerical models of melt flow beneath
ridges. This was extended to three dimensions and
augmented with wet melting by Choblet &
Parmentier (2001). Compaction stresses were accounted
for by Sparks & Parmentier (1991) in a study of melt focus-
ing by buoyant flow along the base of the impermeable
lithosphere at ridges. Spiegelman (1993¢, 1996) included

compaction stresses in numerical models and investigated

was

the consequences of active, buoyancy-driven upwelling on
melting and melt migration. These studies used a simple
melting parameterization in which the melting rate is
directly proportional to the upwelling rate and neglected
freezing entirely. Ghods & Arkani-Hamed (2000) extended
previous models by incorporating temperature-dependent
melting or freezing and conservation of energy.

The present model follows most closely from Ghods &
Arkani-Hamed (2001). It is a 2D solution of the equations
expressing conservation of mass, momentum and energy in
the mid-ocean ridge setting. It consistently accounts for
melting and freezing using a binary phase diagram—a
familiar and transparent thermodynamic parameteriza-
tion. It incorporates compaction stresses and employs a
physically consistent bulk viscosity formulation that has a
singularity for zero porosity (Batchelor, 1967; Schmelling,
2000; Bercovici et al., 2001; Hewitt & Fowler, 2008;
Simpson, 2008).

Reactive and mechanical localization instabilities are
absent from the simulations presented here. Localization
caused by matrix deformation and porosity-dependent visc-
osity was first noted in a linear stability analysis by
Stevenson (1989). It has been the subject of both experimen-
tal (e.g. Holtzman et al.,2003) and theoretical investigations.
Richardson (1998) considered the effects of magmatic buoy-
ancy and Hall & Parmentier (2000) investigated the effects
of water on the instability. Spiegelman (2003) performed a
stability analysis for simple-shear deformation of a partially
molten aggregate with a Newtonian viscosity. This analysis
was extended by Katz et al. (2006) to model non-Newtonian
viscosity. Magmatic localization as a result of fluid-matrix
reactions was considered by Aharonov et al. (1993), who
showed that uniform porous flow up a sufficiently strong gra-
dient in solubility would localize into a channelized porosity
structure. Spiegelman et al. (2001) presented numerical
simulations of reactive, channelized flows with pressure-
dependent solubility. Temperature-dependent reactive melt-
ing was modeled by Katz (2005) in the context of simplified
models of subduction zones.

MAGMA DYNAMICS WITH THE ENTHALPY METHOD

Questions regarding the formation and behaviour of
high-permeability channels beneath mid-ocean ridges
have important implications for our understanding of
magmatic transport. For example, if excesses of ?Ra rela-
tive to 23’Th observed in young ridge lavas (e.g. Sims et al.,
2002; Stracke et al., 2006) originate by fractionation of ura-
nium-series elements in the garnet stability field and are
preserved until eruption at the ridge, then magma ascent
rates must be high and residual porosity low (McKenzie,
1985). Jull et al. (2002) has shown that rapid, equilibrium
melt extraction through high-porosity channels may be
sufficient to explain thorium excesses that originate at
depths of garnet stability. In this model, radium excesses
are generated in the low-porosity inter-channel regions
that feed the channels at shallow depths [see also Elliott
& Spiegelman (2003)]. If radium excesses are generated
by chromatographic effects (without channelization)
(Spiegelman & Elliott, 1993) then the constraint on trans-
port rate is relaxed somewhat, although residual porosity
in the mantle must still be of the order of the elemental
distribution coefficients. Saal & van Orman (2004) pro-
posed an alternative theory in which radium excesses are
generated within the magma chamber itself.

In seeking to present a simple exposition of magma
dynamics with the Enthalpy Method, I have avoided the
conditions that give rise to magmatic localization instabil-
ities. In particular, for the purposes of the present study,
the shear viscosity is taken as constant, independent of
porosity, to avoid the possibility of mechanical instability.
Furthermore, although the pressure and temperature
dependence of solubility in the binary phase diagram sug-
gest the possibility of reactive localization, compositional
perturbations required to nucleate reactive instabilities
have been suppressed. Modification of these attributes
may allow for the investigation of mechanical and reactive
localization processes leading to channelization of mag-
matic flux in the ridge melting region using a modified ver-
sion of the same simulation code that was used for this
study.

The present study concentrates on an exposition and
benchmark of magma dynamics simulations using the
Enthalpy Method, as well as a prediction of the efficiency
of melt focusing by buoyant magmatic flow along the base
of the lithospheric thermal boundary layer. I explore the
sensitivity of focusing efficiency to the magnitude of per-
meability and bulk viscosity. Given the uncertainty in
these parameters, simulations predict a wide range of pos-
sible focusing efficiency (see below).

The paper is organized as follows. The next section
introduces the relevant theory and equations. The section
about solutions to the equations briefly describes the
numerical approach taken here and reports on results
from 1D and 2D simulations. The following sections pro-
vide a discussion of the results and some conclusions.
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Three appendices detail the derivation of the conservation
of enthalpy equation, non-dimensionalization of the gov-
erning equations and an extension of the Enthalpy
Method to systems with more than two thermochemical
components.

MODEL FORMULATION

The model consists of a set of coupled partial differential
equations (PDEs) to describe the essential features of the
magma-mantle system, allowing for consistent melting
and freezing, segregation of melt from the crystalline
mantle matrix, shear and compactive deformation of the
matrix, and transport of energy by both fluid and matrix
phases. 1o assemble the appropriate PDEs, I adopt the con-
tinuum theory of McKenzie (1984) and develop an
approach to the thermodynamics of magma transport
based on the Enthalpy Method.

The Enthalpy Method allows the calculation of melting
and freezing rates based entirely on an equilibrium phase
diagram (Alexiades & Solomon, 1993). It has been com-
monly used to model solidification problems concerning
the formation of a mushy layer (e.g. Oertling & Watts,
2004; Katz & Worster, 2008). Using the Enthalpy
Method, the partial differential equation describing the
evolution of porosity (the volume fraction of fluid present
in a representative volume element of the domain) is
replaced with a closure condition between the local bulk
enthalpy and bulk composition. This closure condition is
derived from the prescribed phase diagram that spans all
the relevant thermodynamic components. This approach
has several advantages over other melting models. First, it
prevents the occurrence of negative porosity values that
can appear in numerical solutions of the PDE governing
the evolution of porosity. Second, it avoids the need for
opaque melting parameterizations. Finally, it reduces the
number of coupled equations that must be solved by elim-
inating the PDE for porosity evolution. The disadvantage
of the Enthalpy Method, as it is described here, is that it
requires the assumption of thermodynamic equilibrium
throughout the domain. Fortunately, its use does not pre-
clude the addition of auxiliary calculations of disequilib-
rium geochemical transport of trace elements and
radiogenic nucleides (e.g. Spiegelman, 1996).

The assumption of thermodynamic equilibrium is valid
if reactions toward equilibrium are sufficiently fast. In par-
ticular, the mantle—melt system should be in equilibrium if
the length-scale over which melt equilibrates with the
mantle is of the order of the continuum scale (a few tens
of grain diameters). Because the crystals are mostly com-
posed of fusible material (i.e. major elements), reaction is
limited by the rate of diffusion of major elements into the
melt, away from the crystal-melt interfaces. Aharonov
et al. (1995) analyzed this system for a broad range of rea-
sonable parameter values and estimated an equilibration

length that is between angstroms and meters. Assuming
mantle grains are no larger than a few centimeters in dia-
meter puts an upper bound on the continuum scale for
magma dynamics of about Im, a good match with the
maximum equilibration length-scale from Aharonov et al.
(1995). Hence it is plausible that the mantle can be
described by a model with local thermochemical equilib-
rium, at least for major elements.

Using that approach, the thermodynamic quantity that
must be explicitly conserved is the gravity-compensated
enthalpy (Ramberg, 1971). In a unit volume containing
both fluid and matrix phases, the magnitude of this quan-
tity is given by ph — pg - x where p is the density, 4 is the
enthalpy per unit mass, g is the gravitational acceleration
vector, x 1s the position vector, and overbars represent
volume-averaged bulk quantities (i.e. for some quantity Q
with different values for the fluid and matrix phases,
0 =¢Qr+ (1 —d)Q ). The first term, ph, represents
the volumetric enthalpy and the second term, pg-x,
represents the potential energy; kinetic energy is neglected
because the Reynolds number for both phases is much less
than unity. For what follows, it will be useful to define the
volumetric bulk enthalpy, H = pk.

Fluid mechanics
Coupled partial differential equations describing the
motion of magma in the convecting mantle have been
derived by several workers (Ahern & Turcotte, 1979;
McKenzie, 1984; Fowler, 1985; Ribe, 1985h; Scott &
Stevenson, 1986). A useful review has been provided by
Stevenson & Scott (1991). Bercovici et al. (2001) derived a
more general version describing two symmetric, immisci-
ble fluids. However it was shown by Bercovici & Ricard
(2003) that in the case relevant to magma dynamics of a
fluid with viscosity that is much smaller that the matrix
viscosity (and neglecting surface tension and damage),
the general equations reduce to the set derived by
McKenzie (1984). Here, the formalism of McKenzie
(1984) is used for consistency with past work.

The equations describing conservation of mass for the
fluid and matrix phases, respectively, are

d
%;I’W, [pfcbvf] —T (1)
Pl v -] = T @

where ¢ is the porosity, vy and v,, are the fluid and matrix
velocities, and T is the rate of mass transfer from the fluid
to the solid phase (the melting rate).

The balance of forces in the fluid phase takes the form of
a modified Darcy’s law,

0 —v) == [V~ pre] )
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where K is the permeability, p is the fluid viscosity, and P,
is the fluid pressure. For the matrix phase, the balance of
forces is a modified Stokes’ law,

VP =V -n(Vv, + V] + V[(;—§n>V-vm] + pg

(4)

where 1 and ¢ are the shear and bulk viscosity of the
aggregate, and the superscript 7' indicates the matrix
transpose. The basic properties of these equations have
been previously studied by many workers including
Barcilon & Lovera (1989) and Spiegelman (19934, 19935).
Katz et al. (2007) described a reformulation of the equa-
tions that is convenient for implicit numerical solution;
this form is given below in equations (17)—(21).

It is worth stressing that the formulation of McKenzie
(1984) does take into account the pressure difference between
fluid and matrix phases as the driving force for compaction.
The stress tensor of the matrix phase, o}, was given
by equations. (Al4) and (Al5) of McKenzie (1984) as

oy L
M — P+ 08— : STk 5
% 70+ 5%y 0x +n<8x]' + ox; 3 7 ox ©®)

where §;; is the identity matrix, subscripts represent compo-
nent indicies into vectors and matricies, and the Einstein
summation convention of repeated indicies applies. As
usual, the dynamic pressure of the solid is defined as

o
8Xk

1 m
Po=—3THo) =P —¢ ©)
where Tr denotes the trace operator. Equation (6) can be
rearranged to give the familiar and physically reasonable
equation for the pressure difference between phases
Pr—P, =1V v,

Energy and composition

Energy is conserved for an arbitrary Eulerian volume V
containing, in general, both fluid and solid phases.
Changes in the total energy within the volume can be
related to fluxes of energy across its boundary V. This rela-
tion is given by

d _ - = A
_/H_pg.de:—/ (phv—ﬁg-x—kVT)-ndS
dt Jy av

(7)

where x is the coordinate vector, % is the phase-averaged
thermal conductivity, 1" represents temperature, and n is
an outward pointing unit vector normal to the volume
boundary. Terms on the right hand side represent fluxes as
a result of advection of enthalpy, advection of potential
energy, and diffusion of sensible heat respectively. For
clarity of interpretation, viscous dissipation, radiogenic
heat production and other irreversible processes have
been neglected in writing equation (7). These contributions

MAGMA DYNAMICS WITH THE ENTHALPY METHOD

have been considered by other workers (e.g. McKenzie,
1984; Bercovici & Ricard, 2003; Sramek et al., 2007) and
may be included in future work.

The differential form of the conservation of energy equa-
tion is derived from (7) in Appendix A. This derivation is
based on assumptions of thermal equilibrium everywhere
within the domain as well as constant, phase-independent
material properties (density, specific heat, thermal expan-
sivity and thermal conductivity). The result is

oH -
—— + pe, exp(—ogz/cp)V - vIT = pLV-

o (®)
(1=, +£ exp(—ocgz/cp)v2 T

where ¢}, is the specific heat, a is the thermal expansivity, z
is a coordinate representing depth, 7 = T exp(—agz/cp)
is the potential temperature, £ is the thermal diffusivity
and g is the magnitude of the gravity vector. Equation (8)
states that changes in the volumetric bulk enthalpy are due
to advection of sensible heat, advection of latent heat and
thermal diffusion. The contribution of potential energy is
accounted for implicitly through the use of potential tem-
perature (see Appendix A). As og/cp < 1, the exponential
coeflicients in equation (8) could be linearized. However,
this would neither clarify the interpretation of the equa-
tion nor speed the numerical solution and so the exponen-
tials are left unchanged.

Application of the Enthalpy Method requires that we
know both the bulk enthalpy /7 and the bulk composition
C everywhere within the domain. For simplicity, we limit
the composition to two thermodynamic components. In
that limit, and with p, =p, = p, the conservation of
bulk composition is governed by the single equation

% +V-oviCr+V-(1 =), C, =DV-6VCr (9)
where €y and C,, are the mass concentrations of the less
fusible component in the fluid and matrix phases respec-
tively, and D is the chemical diffusivity or dispersivity
(see Appendix A). This equation states that changes in the
bulk composition are due to advection by the fluid and
matrix, as well as by diffusion within the fluid phase.

Equations (8) and (9) constrain the bulk enthalpy and
composition. However, their solution requires knowledge
of four other variables, ¢, 7, Cyand C,,. These are provided
by the Enthalpy Method, which allows for the derivation
of a set of algebraic closure conditions that relate these
four unknowns to bulk enthalpy and composition, as
detailed in the following subsection.

The Enthalpy Method

The Enthalpy Method is based on the prescription of ther-
modynamic equilibrium everywhere in the domain. This
condition, quantified by a phase diagram, provides closure
conditions for porosity, temperature, and the two phase
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Fig. 1. A binary, pressure-dependent, phase diagram for a two-
component where system. The functions used to generate this figure
can be written as Ts(C,, P) = To+AT(0.5C3) + 0.5C,)P;/y and T,
(Cp P)=To+AT (0.5(7/3 — lSCf) +2C)Pfy, where AT =T, - T,
P, 1s the lithostatic presure, and y is the Clapeyron slope. It should be
noted that these functions are the inverse of f; and f; from equations

(14) and (15).

compositions in equations (8) and (9) as a function of pres-
sure or depth. For a two-component system, the simplest
phase diagrams are the binary phase loop, which applies
in the case of total solid solution of the thermodynamic
components, and the eutectic phase diagram. Ribe
(1985a) has incorporated both of these diagrams in calcula-
tions of 1D melting columns. Here I consider only the
phase loop, shown in Fig. 1. This a vast simplification of
the full thermodynamic system; however, it has long been
known that mantle melting is not eutectic-like; a continu-
ous variation of the solidus and liquidus with extent of
melting is a more reasonable model (Asimow et al., 1997).
The details of the phase diagram shown in Fig. 1 are ad
hoc—they are chosen for mathematical convenience and
for consistency with an idealized conception of mantle
melting. A more rigorous treatment would use thermody-
namic laws and measurements to constrain the shape of
the liquidus and solidus. For the present purposes, such an
approach is not required because leading-order features of
the overall system are insensitive to these details.

At each Eulerian grid cell in the domain, the energy
available for partition between sensible and latent heat is
given by the value of the bulk enthalpy, H = ph.
Neglecting small changes to the pressure within the cell as
a result of fluid dynamics (i.e. assuming dP ~ 0), the total
differential (A5) can be integrated to give the enthalpy per
unit mass for the matrix 4,, and fluid s phases as

}lm = /Z() + CP(T - T())

/Zf:/l0+€p(T— To)+ L

(10)
(1n

where /i 1s a reference enthalpy at the reference tempera-
ture Ty, L is the latent heat of the fluid, and 7T is the tem-
perature. kg is assigned to be zero at the minimum melting
temperature T’y over all possible compositions. As above,
the specific heat ¢, has been taken as constant and equal
between phases.

From equations (10) and (I1) the bulk volumetric
enthalpy can be constructed as

H = ¢pL + pep(T — T). (12)

Unlike Asimow et al. (1997), I neglect variations in the par-
tial specific entropy of the fluid and matrix and assume a
constant latent heat of fusion. Experiments on basalt by
Bouhifd et al. (2007) over temperatures relevant to mantle
melting have shown that dL/97 = 375 J/kg/K. This means
that a 100 degree change in temperature changes L by
approximately 9% from the value used here (see Table 1).

Three additional equations are needed to solve for ¢, 7,
Crand C,,; these are given by the definition of bulk com-
position and the phase diagram as

C=¢Cr+ (1 =), (13)
Con =/fs(T, P)) (14)
Cr = f1(T, P)). (15)

P, is the lithostatic pressure, a good approximation of the
total pressure at any point within the domain. Equation
(13) defines the bulk composition C, equations (14) and (13)
are parameterizations of the solidus and liquidus surfaces
in Fig. 1 (see figure caption for details). Combining equa-
tions (12)—(15) gives an equation for porosity,

of (LW

pcp

+ T, P)—I—

H— ot (16)

(= d))fs( pep

+ T, P) —C=0.
In general, equation (16) must be solved numerically for ¢
given values of /1 and C. The solution can then be used in
equations (12)—(15) to obtain the other three required vari-
ables, T, Cyand G,

Although I have used the binary phase loop here, this
formulation is easily adapted to other binary phase dia-
grams. For example, the binary eutectic system was
adopted by Katz & Worster (2008). Appendix C gener-
alizes the Enthalpy Method to N thermochemical compo-
nents, although it is clearly more difficult to construct
functions describing the liquidus and solidus surfaces in
this case.

Nondimensional system

Physical considerations of compaction of a two-phase
medium suggest that the bulk viscosity ¢ must approach
infinity as porosity tends toward zero (Batchelor, 1967;
Schmelling, 2000; Bercovici et al., 2001; Hewitt & Fowler,
2008; Simpson, 2008). This introduces a singularity in
equation (4). Rearranging the equations to put ¢ into the
denominator facilitates the handling of this singularity. To
accomplish this, I adopt the pressure decomposition
described by Katz et al. (2007) and in Appendix B. This
allows the system of fluid mechanical equations to be
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reduced to incompressible Stokes’ flow when and where the
porosity goes to zero.

Nondimensionalization of the governing equations is
described in Appendix B. The system of equations can be
written in terms of nondimensional variables as

P
Vv, =— (17)
3
P .
—V-KV73+E:V~K[VP+g] (18)
VP =V (v, + W) — g (19)
OH + ™V .90 = SV - (1 — d)v,, + Pej' V20 (20)

3C+ V- v Cr+ V- (1 — P, C, = Pe ' V- OVC, (21)

where P is the compaction pressure (known in rock
mechanics as the excess pressure), P is the ‘dynamic’ pres-
sure, &€ = (¢ —2n/3) is the viscous resistance to compac-
tion, g is a unit vector in the direction of gravity, 9, is a
partial derivative with respect to time, and 6 is the nondi-
mensional temperature as defined in Appendix B. The
adiabatic parameter A = dag/cp is the proportional
change in temperature as a result of adiabatic decompres-
sion over the compaction length. The Stefan number
S = L/(cpAT) fixes the importance of latent heat relative
to sensible heat in controlling changes in enthalpy. The
thermal and compositional Peclet numbers, Per = dwy/«
and Peq = dwy/D, characterize the importance of advec-
tion relative to diffusion. Representative mantle values
for dimensional parameters are given in Table 1. Closure
conditions for dimensionless Enthalpy Method variables
¢, 0, Crand C,, and the fluid velocity v, are given in non-
dimensional form in Appendix B. With these closures,
equations (17)—(21) are a closed set of 44D coupled partial
differential equations for 44D primary variables
(H, C, P, P, vy), where D 1is the number of spatial
dimensions.

It is important to note that the melting rate, I', does not
appear in the final set of PDEs. The assumption of local
thermodynamic equilibrium everywhere in the domain
means that I' is determined implicitly by the local rate of
change of conditions that affect melting. Given a solution
to the governing equations, I' can be extracted using the
conservation of mass equation (2) in nondimensional form

I

Fr=="—v.(1-d),.

o (22)

Thus the melting rate is the time-rate of change of porosity
that is not due to compaction.

The derivation of equations (17)—(21) is based on a
number of assumptions. The most important is the
assumption of local thermodynamic equilibrium every-
where in the domain. This allows for the local phase
fractions, compositions and temperature to be deter-
mined from bulk enthalpy and composition using the
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Table I: Parameters and their representative values for the

mantle

Quantity Symbol  Value or range  Units
Shear viscosity Mo 10" Pa-s
Bulk-to-shear viscosity ratio IR 10-200

Reference porosity do 0.05 vol. frac.
Permeability constant Ko 107°-10° m?
Permeability exponent n 3

Fluid viscosity n 1 Pa-s
Density 3000 kg/m?®
Density difference Ap 500 kg/m?®
Specific heat cp 1200 J/kg/K
Gravity g 9.8 m/s?
Thermal diffusivity K 107 m?/s
Chemical diffusivity or dispersivity D 107 m?/s
Thermal expansivity a 3x10°° K
Latent heat L 4x10° J/kg
Clapeyron slope ¥ 1.7 x 107 Pa/°C
Inflow concentration Co 0.12 wt. frac.
Reference temperature To 1227 °C
Reference temperature T, 1927 °C
Mantle potential temperature Te 1350 °C
Half-spreading rate Up 5 cm/yr

The size of the chemical diffusivity or dispersivity D is
exaggerated here to speed numerical convergence. Results
do not differ significantly for smaller values of this
parameter.

Enthalpy Method. 1o simplify the equations to a manage-
able level of complexity, an extended Boussinesq approxi-
mation is applied. Using this approximation, variations in
density that are not associated with buoyancy terms are
neglected (except in allowing for adiabatic changes in tem-
perature). Moreover, buoyancy is driven by a constant den-
sity difference Ap between the phases—thermal and
compositional buoyancy are neglected. The system of equa-
tions is further simplified by setting material properties
such as specific heat and thermal expansivity equal bet-
ween phases. A more rigorous treatment of the thermody-
namics would require consistency between these material
properties and the details of the binary phase diagram
(e.g. Denbigh, 1981). Finally, irreversible sources of heat
including dissipation and radiogenic heating are neglected.

Much complexity remains in these equations, however.
As written, the equations allow for variations in viscosity.
Such variations arise from, for example, gradients in
porosity, temperature, and stress (e.g. Karato & Wu,
1993). Buoyancy caused by the presence of fluid is included
in the equations, allowing for modeling of melting-induced
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solid upwelling (Buck & Su, 1989; Scott & Stevenson, 1989;
Cordery & Phipps Morgan, 1992, 1993). The equations
allow for segregation of melt and, with it, fluid transport
of heat and chemistry. Chemical reactions between fluid
and matrix are implicit; they occur as melt segregates and
rises along a lithostatic pressure gradient. The inclusion of
pressure gradients caused by compaction allows for locali-
zation of melt as a result of reactive (e.g. Aharonov et al.,
1995; Spiegelman et al., 2001) (e.g
Stevenson, 1989; Katz et al., 2006) mechanisms. Because of
this complexity, analytical solutions to the full equations

and mechanical

do not exist; numerical methods are required and these
are discussed below.

Permeability and viscosity

In keeping with the principal goal of this paper, to demon-
strate the utility of the Enthalpy Method for problems of
magma dynamics, I have chosen to reduce constitutive
equations to the simplest reasonable form. For the binary
phase diagram (Fig. 1), I have applied the same
Clapeyron slope vy to the diagram.
Dimensional permeability is calculated according to the

entire phase

standard Kozeny—Carmen relationship (Bear, 1972), sim-
plified for small porosity and constant grain size to (Wark
& Watson, 1998; Wark et al., 2003)

K = K" (23)

where 7 13 a constant exponent typically taken to equal 2 or 3.
The bulk viscosity is taken as a constant for the 1D melt-
ing column described below and as being proportional to
the inverse porosity in 2D calculations (Batchelor, 1967,
Schmelling, 2000; Bercovici et al., 2001; Simpson, 2008).
In the latter case, it is given in dimensional form by
bo
¢=Crn ®
where g is the ratio of bulk to shear viscosity at the refer-
ence porosity ¢¢. The product {zd, has been estimated
experimentally by Cooper (1990) to be about 10 and theo-
retically by Hewitt & Fowler (2008) and Simpson (2008) to
be about unity. The singularity in equation (24) has impli-
cations for the behaviour of the compaction length as
¢ — 0. Ghods & Arkani-Hamed (2000) used a bulk vis-
cosity formulation without a singularity, giving smaller
compaction lengths near ¢ =0 than those calculated
here. This may have lead to the low focusing efficiency of
the decompaction channel in their simulations.
For the purposes of the present research, the shear
viscosity 1 is taken to be a constant 7, independent of tem-
perature, pressure, porosity, stress, etc. This simplification
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is inconsistent with experiments on mantle deformation
(e.g. Karato & Wu, 1993; Hirth & Kohlstedt, 2003)
and excludes the possibility of plate-like behaviour of
cold thermal boundary layers, as well as localization as a

result of mechanical interactions between fluids and solids
(e.g. Holtzman et al., 2003). Such behaviour is considered to
be important for melt segregation in the Earth (e.g.
Kelemen et al., 2002; Katz et al., 2004, 2006). However, the
simulations described below are readily extended to more
complex rheologies, and this extension is among the goals
for future work.

The compaction length 6, is the length-scale that
emerges from nondimensionalization of the equations of
magma dynamics (1)—(4). It is the scale over which pertur-
bations to the compaction pressure decay away
(Spiegelman, 199354). As pointed out by Schmelling (2001),
with a bulk viscosity proportional to nd~" the compaction
length can be considerably longer than previous estimates,
where the bulk viscosity was taken to be approximately
equal to 1. Applying the relation (24) for the bulk viscosity
and assuming that 3¢z, > 40,

1/2
8, = K(€+4n/3)/;t%<§%)°) VEn/u.  (25)

This equation states that for a porosity of 1% and
LrPy = 1, the compaction length is about a factor of 10
larger than estimated by McKenzie (1984).

SOLUTIONS TO THE EQUATIONS

The equations (17)—(21) are in a form amenable to numeri-
cal solution. Below I describe the discretization approach
and the numerical method used to solve the discrete
system. Results of 1D simulations are presented and com-
pared with semi-analytical calculations (Ribe, 19854) as a
benchmark of the simulation code and as a means to con-
strain certain parameters. Two-dimensional simulations
were performed for a restricted set of parameters; results
of these simulations are presented following the 1D results.
Parameter values used in the constitutive and governing
equations are given in Table 1.

Discretization and numerical solution

The governing equations are discretized on a staggered,
Cartesian grid with matrix and fluid velocities located on
cell boundaries and all other variables located at cell cen-
ters. The nonlinear system resulting from the discrete mass
and momentum equations is separated from that of the
enthalpy and bulk composition equations; the two are
solved in a Picard iteration loop. Advection terms are
handled using an upwind Fromm scheme with second
order accuracy (Albers, 2000). Solution of each set of dis-
crete equations is performed using a Newton—Krylov—
Schwartz method provided by the Portable, Extensible
Toolkit for Scientific Computation (PETSc, Balay et al.,
2001, 2004). Details and references for this approach have
been provided by Katz et al. (2007) for the equations of
magma dynamics and by Katz & Worster (2008) for the
Enthalpy Method.
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Time-stepping of the enthalpy and composition equations
is performed semi-implicitly using a Crank—Nicolson
scheme. Although this scheme is unconditionally stable, the
time-step size is limited, to preserve accuracy, to be close to
the limit prescribed by the Courant—Friedrichs—Levy
(CFL) condition. This limit is derived from the velocity of
the magma, which can be orders of magnitude larger than
that of the mantle matrix, depending on the permeability of
the matrix and the buoyancy of the magma. For permeabil-
ity in the range considered here, a grid spacing of 0.75 km
and a domain of about 150 kmx 70 km, the simulation of
0.5-2 Ma of model-time required about 40 h of clock-time
on ecight nodes of a cluster with one Intel® Xeon®
(24 GHz,1 GBRAM) processor per node.

Convergence of the simulations to an accurate solution
for decreasing grid-spacing and time-step is not rigorously
proven here. Katz & Worster (2008) performed simplified
benchmark simulations of the Enthalpy Method and of
thermal convection in a fixed porous medium and found
excellent convergence with analytical or accepted solu-
tions; much of the discretization details and code from
that work are reused here. A further benchmark of the
Enthalpy Method is performed below with a 1D upwelling
column. In two dimensions, comparison of simulations at
different spatial resolutions indicates that for grid-spacing
smaller than ~1 km, integrated results such as focusing dis-
tance do not vary systematically with grid-spacing. This
result is shown below in Fig. 7a; it gives confidence that
the simulations are convergent.

Upwelling column model

One-dimensional simulations of upwelling and melting
mantle rock were performed as a benchmark for the simu-
lations code. Ribe (19854) considered the melting of a two-
component mantle with complete solid solution and no
thermal or chemical diffusion. He derived a simplified
ordinary differential equation for the steady-state profile
of temperature. From the temperature profile, Ribe
(1985a) calculated the degree of melting, and the approxi-
mate porosity and fluid upwelling profiles, all of which can
be compared directly with
Neglecting diffusion, the steady-state, nondimensional gov-

results of simulations.

erning equations become

0w,
o s (26)
9 P 9 (P

ok PE=g k() e

apr 0 Ow,

3_5 B 3_zn 0z (28)

e"‘zaﬁw — 520~ oy, (29)
4 0z

9

5 [0w G + (1 = HCa] =0, (30)
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where w,and w,, are the vertical components of fluid and
solid velocity, respectively. The matrix-buoyancy term ¢g
in equation (19) has been dropped because matrix convec-
tion is not possible in 1D solutions. Boundary conditions
include a fixed potential temperature of 1350°C at the
bottom of the domain and a fixed solid upwelling rate,
Uy=5 cm/yr, at the top of the domain. Incoming mantle
is taken to be 12% of the less fusible component and 88%
of the more fusible component. Other parameters are as
given inTable 1.

Although it is possible to reduce equations (26)—(30) ana-
lytically to ordinary differential equations matching those
solved by Ribe (19854), I have solved them numerically to
demonstrate the validity of the method and implementa-
tion. Figure 2 shows the comparison between results from
these simulations and the curves calculated by Ribe
(1985a). The correspondence is imperfect for porosity,
fluid velocity and bulk composition because Ribe (1985a)
neglected pressure gradients arising from compaction in
his solution. Temperature and the degree of melting for a
steady-state, equilibrium, 1D melting column are indepen-
dent of the flow parameters, as demonstrated by Ribe
(1985a), and as evident in Fig. 2a and b, where curves for
all values of A exactly coincide.

These results demonstrate that the Enthalpy Method
and this implementation are valid for simulations of
magma dynamics. They also show that the calibration of
the phase diagram (i.e. the chosen values of Ty, T}, and v)
gives an amount of melting for 1350°C potential tempera-
ture mantle that is consistent with expectations (Langmuir
et al., 1992). Figure 2 shows that the porosity and fluid
upwelling rate depend on the choice of Ky [in particular,
b o 1{071/” and w Ké/" (Ribe, 1985a4)]. Constraints on
the permeability of mantle rock come mainly from experi-
mental measurements of monomineralic samples (e.g.
Wark & Watson, 1998), texturally equilibrated rocks (e.g.
Faul, 1997), or from grain-scale models (e.g. Zhu & Hirth,
2003; Cheadle et al., 2004). These studies generally used an
equation similar to (23) to fit their results. The permeabil-
ity exponent 2 is typically estimated to be two or three.
Wark et al. (2003) has shown that permeability laws derived
for monomineralic systems can be applied to upper mantle
assemblages. Given the variability of experimental results
and the poor constraints on grain size in the mantle, other
workers such as Faul (2001)
approach, seeking a permeability model that is consistent
with geophysical and geochemical data. Results from the
Mantle ELectromagnetic and Tomography (MELT)
experiment (Forsyth et al., 1998) were interpreted by Faul
(2001) based on reductions in P-wave speed (Faul et al.,
1994) to indicate the presence of ~1-2% melt in disk-
shaped pores beneath the East Pacific Rise. Observed tho-
rium disequilibria (see the Discussion below) suggest even
smaller residual porosities. Simulations shown in Fig. 2

have taken an inverse
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Fig. 2. Results of 1D simulations with the Enthalpy Method (continous curves) compared with semi-analytical calculations after Ribe (1985a)
(dashed curves). Darker line colour represents a smaller value of Ky; the black curve denotes the line for which Ky =0. The other six curves
represent Ko=10"",107"°,107% 107% 107" and 10™® m% The poor match between simulations and theory for porosity, fluid velocity and bulk
composition is the result of the use of the ‘zero-compaction length’ approximation by Ribe (1985a). General agreement validates the numerical

approach and implementation.

indicate that 107 < Ky < 107 m” is the range of perme-
ability constants that produces such a range in porosity.

Mid-ocean ridge model

In this section I describe 2D simulations of mid-ocean
ridge melting and melt transport. The simulations combine
melting, freezing, and porous flow of magma with a consis-
tent determination of the matrix flow field as a result of
both compaction and lithospheric motion. The Enthalpy
Method is unchanged in higher spatial dimensions. The
domain, shown schematically in Fig. 3, contains a vertical
section of the ridge perpendicular to the ridge strike. It
extends laterally from the ridge axis to a specified width
and from the surface to a specified depth. Reflection
boundary conditions on the vertical boundary beneath
the axis enforce symmetry across the axis and prevent
flow through the boundary. The other vertical boundary
uses open, outflow conditions to minimize disturbance to
the interior of the domain. The bottom boundary has
fixed enthalpy corresponding to the desired potential tem-
perature at zero porosity. The top boundary has a specified
matrix velocity v,, = (Up, 0) representing the moving tec-
tonic plate. Away from the ridge, the top boundary has a
fixed enthalpy corresponding to a temperature of 0°C. In
contrast, within a region less than 6 km from the ridge,

9:H =0 H = He \
E U=Uy, W=0, . (C,P,P) =0 g
gl g
= ® |z
~ = E
& ~ S s
Qio Il %‘ =
L [Governing equations] 9 m
G e
- o~
) I
8 ]
© H=Hp, C =0
Umz:P:PZO,aZVV:O

Bottom boundary

Fig. 3. Schematic diagram of 2D model domain with boundary con-
ditions. Partial derivatives with respect to x, z are denoted by 9,, 0..
The horizontal and vertical components of the matrix velocity v,
are denoted U and W] respectively. H; is the enthalpy corresponding
to T=0°C and ¢ =0; Hp is the enthalpy corresponding to the pre-
scribed inflow temperature and ¢ =0. Cj is the concentration of the
incoming mantle.

the
0H /dz = 0. This allows hot, upwelling mantle to reach
the surface and provides a porous conduit for magma to
leave the domain. Further details on boundary conditions

boundary condition on enthalpy is insulating,

are given in Fig. 3.
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The segment of the top boundary with an insulating
boundary condition in enthalpy allows hot mantle to
reach the surface and thus gives magma a route to leave
the domain at the ridge. Unfortunately, this approach
works only when the spreading rate U, is large enough
that vertical advective heat transfer dominates lateral dif-
fusive cooling beneath the ridge. In this paper I consider
only one half-spreading rate, 5 cm/yr, that is large enough
to avoid this problem. In similar calculations, Ghods &
Arkani-Hamed (2001) specified a fixed, low temperature
over the entire upper boundary and extracted melt from
where it pooled below the thermal boundary layer. Such
an approach is also possible for the present model but has
not been implemented at present.

Below I describe the initial condition, time-evolution
and steady state of a typical simulation, as well as the effi-
ciency of melt focusing. Additional simulation results are
considered in the Discussion, with predictions for crustal
thickness and magmatic transit time as a function of key
model parameters.

Initial condition

Because of the complexity of the equations, the lack of a
good starting guess, and the possible presence of solitary
waves, it has not been possible to solve the steady-state
equations directly for the 2D mid-ocean ridge model.
Instead, a fully time-dependent solution is computed; this
solution may approach steady state. Because such an
approach can be computationally expensive, it is impor-
tant to choose an initial condition that minimizes the tran-
sient time in the model. One possible choice is to prescribe
sub-solidus enthalpy throughout the domain and allow
heat advection by the solid to establish the thermal ridge
structure and melting regime. This is impractical, however,
because once melting and melt transport begin, the advec-
tive time-scale for the magma reduces the time-step size to
a small fraction of that determined by the advective time-
scale for matrix motion.

A better approach was developed by Ghods & Arkani-
Hamed (2000) and has been adapted for use here. To ini-
tialize the time-dependent simulation, the matrix velocity
v, 1s specified by the isoviscous corner-flow solution
(Batchelor, 1967) for an incompressible fluid. The pre-
scribed velocity field is then used to solve the energy equa-
tion (20) with K =0 to eliminate melt-segregation effects.
This solution provides a map of (non-dimensional)
enthalpy, porosity, temperature and phase compositions
everywhere in the domain. The enthalpy is then reduced
by subtracting off the fraction that is contained in latent
heat, Sd(x). Next, the porosity is set to zero and the bulk
composition is set to the composition of the solid phase
after the initial melting; temperature is left unchanged.
The result is a melting region that is perched precisely on
the solidus with a temperature structure very close to
steady state.

MAGMA DYNAMICS WITH THE ENTHALPY METHOD

Steady and quasi-steady solutions

There is an initial transient phase in all simulations during
which porosity in the melting region increases from zero
and melt begins to percolate upward. Melt produced
directly under the ridge ascends vertically and never
encounters the base of the cold lithospheric plate. In con-
trast, off-axis melts rise nearly vertically and accumulate
at the depth of the solidus, which is a sloping boundary
beneath the lithospheric thermal boundary layer, as
shown in Fig. 4a. Pooling of magma beneath this bound-
ary leads to a high-porosity layer that Sparks &
Parmentier (1991) termed the decompaction layer. The
slope of this layer directs the buoyant flow of magma
toward the ridge. Porosity and permeability in the decom-
paction layer increase with time during the transient phase
until a balance exists between (1) the flux of magma up the
decompaction layer to the ridge, (2) the flux of magma
from the melting region into the decompaction layer, and
(3) the flux of magma from the decompaction layer into
the cold lithosphere via under-plating (Sparks &
Parmentier, 1991).

If the decompaction layer is morphologically stable, an
approximately steady-state solution may emerge after the
initial transient. The model time required to establish this
steady state decreases with increasing background fluid
velocity, w, as defined in Appendix B. This means that
although simulations with larger magmatic flow velocities
are more computationally intensive, such simulations also
pass through the initial transient phase in less model time.
In general, larger values of the bulk-to-shear viscosity
ratio, {p, are associated with a larger compaction length,
stability of the decompaction layer, and the existence of a
quasi-steady state. Instability of the decompaction layer is
considered below.

Figure 4c shows that steady-state melting and melt seg-
regation deplete the solid mantle of the more easily fusible
component. The lithosphere is slightly enriched relative to
the solid within the compaction layer because of the under-
plating that occurs at the top of the compaction layer. This
reintroduces a measure of the more easily fusible compo-
nent into the the solid phase.

Time-dependent solutions

Bulk viscosity plays an important role in determining the
stability of the decompaction layer. Figure 4b shows a
snapshot of a simulation in which ¢z = 25, a factor of four
smaller than that of figure 4a. Magma has ponded on the
solidus boundary and formed narrow regions of high
porosity up to 9%. Streamlines show that magma rises
within the decompaction layer only until it reaches a
high-porosity zone where it is trapped. A comparison of
the solidus and isotherm contours in Fig. 4a and b demon-
strates that the trapped magmatic flux creates a local dis-
turbance to the temperature and bulk composition.
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The disturbance grows with time as more magma is
trapped, modifying the composition of the lithosphere, as
shown in Fig. 4¢ and d.

Magmatic focusing

Tracers are introduced into the flow to determine the path
lines of fluid parcels. The particles have zero distribution
coefficient and are thus advected at the velocity v, which
is equal to the matrix velocity where the porosity is zero.
The particles do not otherwise affect the simulation. For a
simulation with Ky = 1077 m* and ¢z = 100, a swarm of
tracers was introduced into the bottom of the domain
after the simulation had reached steady state. Figure 5a is
a histogram of the lateral distance from the ridge axis
where these tracers cross into the bottom of the melting
region. Black bars represent particles that arrive at the
ridge axis and white bars represent particles that are
frozen into the oceanic lithosphere. It is evident that for
this simulation the focusing distance is ~60 km. For tracers
that are advected to the ridge, Fig. 5b shows the elapsed
time for the tracer to travel from a given depth near the
bottom of the melting region. The elapsed time is longer
for particles that travel through the decompaction channel
to reach the ridge axis.

Figure 5b compares the transit time along (tracer) path
lines with the transit time along streamlines. If the flow
field was in perfect steady state then the two would give
the same result. Good agreement close to the ridge axis
for Ky = 1077 m” suggests that streamline transit times,
which can be calculated instantaneously, are an acceptable

substitute for expensive tracer transport calculations for
simulations that approach a steady state. As expected,
transit time decreases as the permeability constant K is
increased. For K, between 107% and 1077 m2, transit
times for melts that originate beneath the ridge near the
bottom of the melting region (~54 km depth) range from
50 to 100 kyr. For comparison, the half-life of *°Th is
about 75 kyr.

Estimation of the distance over which magma is focused
to the ridge is possible using results in Fig. 5a. A similar
result can be obtained by finding the width of the region
that produces enough melt to balance the surface melt
flux. In steady state one can calculate the balance of melt
production and melt extraction at the ridge by integrating
equation (l). Let us consider a rectangular region £
extending from the surface to a depth below the melting
region and from the ridge axis to some distance, xq, as
shown in Fig. 4a. Using Gauss’ theorem, the integral of
(1) can be written

/ p(])Vf-ﬁdS:/ rdv
Q Q

where I' is given by equation (23), 9€2 represents the bound-
ary of the region and n is a unit normal vector pointing out
of the region. This equation states that the net melting

(31)

within the region must be balanced by magmatic flux into
or out of the region.

The utility of equation (31) is clarified by expanding its
two terms. The surface integral can be rewritten as the sum
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of the melt flux out of the domain at the ridge and the melt
flux into the domain along the vertical boundary at xg;
there is no melt flux over the bottom boundary or the
ridge-axis boundary. The volume integral of I' can be
rewritten in terms of the integral of the melting
(Tmeys >0) and freezing (I't-, <O0) rates. With these
expansions, equation (30) becomes

2D XQ
p(/ dudzl,—,, — / dw dx'z:())
0 0

(32)
= /(Ff%m + l—‘mﬂf)dV
Q
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= outflux at ridge
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= == melting

== 1 freezing
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150
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Fig. 6. A plot of the terms in equation (32) as a function of the width
xq of the region €. This result is from the simulation shown in Fig 4.
The equivalent focusing distance is denoted ij. By definition, the
cumulative melting curve is always positive and the cumulative freez-
ing curve is always negative. The outflux curve is positive and it is
constant for all xq greater than the width of the ridge outflux region.
The melting curve and the outflux curve must intersect because all
the melt erupted at a ridge is produced in the melting region below
it. Because equation (32) states that at any xq the y-values of the four
curves must sum to zero, the freezing curve must intersect the
influx curve, at steady state, where the melting curve intersects the
outflux curve. This point defines the equivalent focusing distance.

where « and w are the horizontal and vertical components
of the velocity of the fluid and z; is the depth of the
domain. Equation (32) is true for any value of xq. At some
distance x5, shown in Fig. 6, the flux out of € at the ridge
axis [term 2 in equation (32)] is balanced by melting
(term 4) and the flux into 2 through the vertical boundary
at xp, (term 1) is balanced by freezing (term 3). This dis-
tance is named the equivalent focusing distance (EFD),
the distance within which the melt produced is equal to
the melt delivered to the ridge. Because streamlines initiat-
ing farther from the ridge axis always travel through the
compaction channel at shallower depth than those origi-
nating closer to the ridge axis (see Fig. 4), these distal
melts are frozen into the lithosphere first. The EFD is
therefore approximately equal to the maximum lateral dis-
tance over which magma is focused to the axis in simula-
tions that have reached steady state.

Figure 7b shows the EFD for an ensemble of simulations
with different values of Ky and the viscosity ratio, {z. For
values of ¢z below 25, increased permeability cannot com-
pensate for reductions in . Larger values of ¢z and K,
however, yield a larger compaction length and more effi-
cient melt focusing. Moreover, Fig. 7c shows that the EFD
is correlated with the compaction length at 30 km depth
below the ridge axis. Evaluation of the compaction length
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Fig. 7. Plots showing the variation of equivalent focusing distance, X{z
with model parameters. (a) EFD vs permeability constant £ for
three grid spacings, 0.5, 0.75 and 1km. Evidently, for {z =100, a 1km
grid resolution is sufficient to resolve the integrated behaviour of

at this position avoids perturbations caused by the decom-
paction channel and gives a value representative of the
behaviour of the simulation.

DISCUSSION

An important check of a model of melt transport at a mid-
ocean ridge is the predicted crustal thickness as a function
of time. In this model, crustal thickness is computed as the
integrated volumetric magma flux through the surface
divided by the half-spreading rate times the ratio of crustal
density to magmatic density (which is taken as unity here)
and is shown in figure 8. Mid-ocean ridges with full
spreading rates greater than 2 cm/yr have seismically mea-
sured crustal thickness of 5—7 km (Bown & White, 1994).
In simulations, crustal thickness is sensitive to the melt
production rate in the melting region and the efficiency of
focusing of melt to the ridge. All simulations reported here
use the same mantle potential temperature, composition
and phase diagram, and hence the maximum degree of
melting (~20%) and melt production is roughly constant
between them.

Quasi-steady-state solutions produce crustal thickness
that is either constant or oscillates around a constant
value, as evident in Fig. 8. Oscillations may be due to low-
amplitude, large-wavelength solitary waves in the melting
region or the decompaction channel. Numerical simula-
tions reported by Ghods & Arkani-Hamed (2000) also
produced oscillations of crustal thickness, although of a
much larger amplitude than those reported here. This
may be due to their recipe for extracting melt at the ridge,
which differs from the open top boundary in the present
simulations.

The results in Fig. 8 show that predicted crustal thick-
ness depends on the permeability and resistance to com-
paction of the mantle matrix. It is evident that smaller
values of ¢ lead to oscillatory crustal thickness that is con-
sistently below observed values. Both K and ¢z exert an
important control on melt transport within the decompac-
tion layer that, in turn, controls the efficiency of magmatic
focusing to the ridge. The streamlines in Fig. 4a and b
demonstrate how a decrease in efficiency occurs in simula-
tions. As noted by Spiegelman (1993¢), melt is deflected
into the compaction channel more efficiently if the width

the system. (b) EFD versus K| for values of {p varying from 12,5 to
200. At lower &g the equivalent focusing distance is small, even for
large permeability. This is due to magmatic trapping in mushy pools
along the solidus, as shown in Fig. 4b. (Note the agreement between
the EFD for £z =100, K,=10"" m? here and in the tracer focusing
region in Fig. 5a). (¢) EFD vs compaction length calculated with
equation (25) at 30km depth directly below the ridge axis. Each
point represents the state of an independent simulation at the final
output time of that simulation (i.e. at steady state, if applicable).
The line is a least-squares fit to the data and has a jy-intercept of
6km, the prescribed axial half-width of the ridge. The simulations
vary in A, and {g but all have a grid spacing of 0.75 km.
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Fig. 8. Crustal thickness as a function of time. Each panel shows the evolution of crustal thickness from four simulations with K= 10791078,
1077 and 10"° m? and a grid spacing of 0.75 km. (a) £z =100, (b) {x =150, (¢) {r=25, (d) Cr=12:5. Simulations with ¢z =200 are not shown but
display similar evolution to those with £z =100. The continuous grey lines for K, =10""m” in (a) and (c) correspond to the simulations shown

in Fig. 4.

of the freezing interval around the solidus is small relative
to the compaction length. Figure 9 shows that this is
clearly the case when the permeability and bulk viscosity
prefactors, Ky and ¢g, are large.

The total focusing efficiency, averaged over a period
from 250 kyr into each simulation until its end, is shown
in Fig. 10 for a range of simulation parameters. These
results can be compared directly with figure 6 of Sparks
& Parmentier (1991). In general, total focusing efficiency is
higher than their prediction for a given value of Ky/u
where the ratio of bulk to shear viscosity is greater than
about 50. Tor the maximum degree of melting (~20%)
that is imposed in present simulations by the choice of
mantle potential temperature, phase diagram parameters,
spreading rate, etc., the total melt production can yield a
crust of about 7 km thickness; hence an efficiency of greater
than ~70% is required to produce a crust thicker than
5 km. If, however, more melt were produced overall then
the necessary efficiency would be smaller.

Figure 11 shows the composition of the evolving and
steady-state crust for £z = 100 and a range of K| in terms
of the concentration of the high-temperature melting com-
ponent. The variation is ~5% around the mean, whereas

50

E£M40
£

£ 2830
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o ] 20
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n . 0

10 30 50 70 90
Distance from ridge axis, km

Fig. 9. A map of the compaction length §, from the same simulation
as in Fig. 12a with Ko =10"" m? and zg =100. It should be noted that
although the bulk viscosity decreases in the sub-lithospheric decom-
paction layer, the effect of increased permeability is larger and leads
to a factor of ~5 increase in compaction length there. The black band
around the melting region is where the porosity is very small, giving
an extremely large bulk viscosity and hence an extremely large com-
paction length. Simpson (2008) has suggested that in the limit of van-
ishing porosity, compaction length should go to zero; in that work this
was accomplished by regularizing the permeability and bulk viscosity
functions.

crustal thickness varies by more than a factor of two.
Higher permeability corresponds to a thicker crust with a
larger fraction of the high-temperature-melting compo-
nent. One-dimensional upwelling columns produce crust
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Fraction of melt extracted

1077 1076

Ko/l m?/Pa/sec

107° 1078
Fig. 10. Focusing efficiency and crustal production in simulations
with various values of Ky and ¢{z. Each point represents the mean effi-
ciency over a range of simulated time from 250 kyr after initiation of
the simulation until the maximum time simulated (see Fig. 8).
Compared with results reported by Sparks & Parmentier (1991) for
Ko/u=10"" m? the efficiency of focusing in this figure is higher for
g =100 and lower for z=250 (see their figure 6, for a spreading
half-rate of 3 cm/yr). The contribution of melts formed in the corner
of the melting region not included within the domain of the present
calculations is negligibly small. The ;=100 curve uses simulations
at a grid resolution of 0.5 kmy; all others have a resolution of 0.75 km.

of a single composition, independent of permeability or
other flow parameters (Ribe, 19854). In 2D simulations,
lateral melt focusing injects magma into the mantle
column directly beneath the axis. This exotic magma equi-
librates with the sub-ridge mantle by reactive melting.
Greater focusing efficiency yields a larger flux of magma
(and heat) through the mantle immediately beneath
the ridge. Melting reactions increase the local degree
of melting and deplete the solid of its low-7"-melting com-
ponent. Therefore, more melt focusing yields a more
depleted bulk composition and a more depleted magma
composition beneath the ridge axis at steady state.
This is shown in Fig. 11a and explains the positive correla-
tion in Fig. 11b between crustal thickness (magmatic flux)
and depletion of that crust in the low-T-melting
component.

Observations of uranium-series disequilibrium in young
lavas provide another constraint on magmatic transport
processes. If fractionation of uranium and thorium takes
place mainly within the garnet stability field at £ 60 km
depth and magmatic transport is by diffuse porous flow,
then preservation of a 'Th excess at the surface requires
mantle porosities below 1% and transport times of

the order of a few half-lives (Spiegelman & Elliott, 1993).
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Fig. 11. Crustal composition assuming perfect mixing of the mag-
matic flux through the top of the domain. Simulations have ¢z =100
and K, ranging from 10~ to 107® m” (a) Secular trends in the con-
centration of the high-temperature melting component in the crust.
(b) Steady-state crustal composition vs steady-state crustal thickness
for the four simulations from (a).

The present model does not include explicit calculations
of radiogenic transport. It does, however, achieve ambient
porosities and magma transit times that are small enough
to be consistent with observed **Th disequilibrium.
Figure 12 shows mantle residual porosity predicted by
simulations with different values of Ky and ¢z Consistent
with 1D column model results presented above, permeabil-
ity is a strong control on ambient porosity. Resistance to
compaction provided by the bulk viscosity does not exert
an important influence on residual porosity because in the
melting region, where the melting rate varies slowly with
respect to the compaction length, the zero-compaction
length approximation (neglecting compaction stresses) is
valid.

21Pa and 2%Ra, with half-lives of only about 32500
and 1600 years respectively, may represent a tighter con-
straint on magmatic transport if excesses are generated
within the melting region and not the magma chamber
(Stracke et al., 2003). According to models by Stracke et al.
(2006), disequilibrium transport of magma with a velocity
between 2 and 100 m/yr is required to match data from
Iceland. Stracke et al. (2006) also argued for mixing of
rapidly transported melts from beneath the ridge with
melts transported over a greater transit time, perhaps
those originating at a larger lateral distance from the
ridge. Melt focusing along the base of the lithosphere
might provide the mechanism for such mixing. Porosity in
the decompaction channel, however, is predicted to be
larger than that in the ambient melting region, and this
will affect the degree of secular disequilibrium of the
melts that pass through it. In particular, if the porosity of
the decompaction channel is significantly larger than the
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Fig. 12. Fine lines represent the porosity at 30 km depth and 10 km
distance from the ridge axis as a function of K, for different values of
¢ The bold continuous line is the porosity at 30 km depth in 1D simu-

lations (see Fig 2). The bold dashed line is the curve ¢p=K, "
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distribution coefficients of the radiogenic nucleides then
decay back to secular equilibrium will occur. Future work
will incorporate direct calculations of U-series fractiona-
tion, transport and disequilibrium.

SUMMARY AND CONCLUSIONS

The simulations described here combine the fluid-mechan-
ical theory of McKenzie (1984) for mass and momentum
conservation with the Enthalpy Method for modelling
energy transport and the thermodynamics of melting. A
pressure-dependent phase diagram describing a two-
component system with full solid solution is employed as a
representation of thermodynamic equilibrium. The equa-
tions are solved numerically in one and two dimensions
and the results are analysed in terms of the efficiency of
melt focusing.

Melt focusing at mid-ocean ridges may have important
3D characteristics, especially near the ends of offset seg-
ments of ridge. Carbotte et al. (2004) discovered a global
pattern of asymmetry in axial depth across ridge trans-
form faults and showed that it is correlated with the direc-
tion of ridge migration over the mantle in the hotspot
reference frame. These observations motivated a model of
asymmetric upwelling, melt production and 3D magmatic
focusing by Katz et al. (2004). In that work, magmatic flow
was not calculated explicitly but was parameterized
according to inferences about the behaviour of magma
beneath a migrating ridge with a transform fault (Magde
& Sparks, 1997). A 3D extension of the current simulations
would provide a basis for evaluating these inferences and
exploring along-axis variations in melt supply. Such a
simulation, however, would require a substantial increase

MAGMA DYNAMICS WITH THE ENTHALPY METHOD

in the number and/or speed of processors to maintain cur-
rent simulation run-times.

The choice of constitutive equations has an important
influence on the behaviour of the system. Simulations pre-
sented here use a constant shear viscosity and a bulk vis-
cosity that varies with the inverse porosity. The later has a
singularity when the porosity is zero, which is handled
here such that the equations reduce to incompressible
Stokes’ flow in that limit. This is different from the
approach of Ghods & Arkani-Hamed (2001), which used a
non-singular (but temperature-dependent) relation for the
bulk viscosity. The difference suggests a possible explana-
tion for the relatively low focusing efficiency predicted by
Ghods & Arkani-Hamed (2000): in their simulations,
magma was able to migrate into the sub-solidus region
above the decompaction layer and solidify, instead of
being deflected by a gradient in compaction pressure. The
temperature dependence of the bulk viscosity might be
expected to enhance magmatic focusing. However, this is
true only if a sharp change in matrix viscosity occurs
at the temperature of the mantle solidus—not the case
for experimentally constrained rheological parameters.
Hence the incorporation of a temperature-dependent bulk
viscosity into our model would probably not change the
results significantly.

Temperature and porosity dependence of the shear vis-
cosity might have interesting consequences for the flow
field of the matrix phase. In particular, it will be instruc-
tive to study the effect of porosity-weakening viscosity in
the context of the stress and deformation field of a ridge.
There has been much speculation (e.g. Rabinowicz &
Vignersse, 2004; Katz et al., 2006; Holtzman & Kohlstedt,
2007) on the relevance of a mechanical porosity-banding
instability for the melting region beneath ridges.
Although this instability is clearly active in experimental
deformation of partially molten rocks (e.g. Holtzman
et al., 2003), experiments show it emerges only at strains
larger than unity. Flow within the region of partial melting
beneath ridges may not achieve such large strains, or it
may achieve large enough strains but over a time-scale
that is long relative to the time-scale for annealing to tex-
tural equilibrium. Furthermore, although buoyancy-driven
segregation of melt does not occur in experiments because
of their small size and rapid deformation rate, it is clearly
active in the mantle. Butler (2009) has shown that buoy-
ancy will modify the signature of a porosity-banding
instability, although it should not erase it altogether. An
extension of the models described here will provide a basis
for addressing these questions.

Assuming that the neglected dependences of shear and
bulk viscosity are not leading-order controls on melt focus-
ing, and hence that the current models capture the physics
of melt focusing at ridges, we can draw conclusions about
the magnitude of the parameters Ky and {g. If the melting

2115



JOURNAL OF PETROLOGY | VOLUME49 | NUMBERI2 | DECEMBER 2008

rates calculated here are within 10% of natural values such
that the total melt production rate is approximately cor-
rect, then it is reasonable to rule out any combination of
Ky and g that yield a crustal thickness smaller than 5 km
or a focusing efficiency less than about 70%. IFrom Fig. 10
we can see that this can be achieved for Ky as small as 107°
m? if £z= 100. If we take account of the observed 2°Th
excesses and assume that the current models capture the
physics of magma migration (i.e. no channel or dike flow),
then Ky= 1077 m” is required to give magma transport
times that would preserve disequilibrium formed deep in
the melting column. In this case, ¢z could be as low as
about 25 and the bulk viscosity prefactor £z, would be
in good (although perhaps fortuitous) agreement with pre-
vious estimates (Batchelor, 1967; Bercovici et al., 200l
Hewitt and Fowler, 2008; Simpson, 2008).

Although porosity-induced matrix buoyancy is included
in the full governing equations [$g in equation (19)], it has
been excluded from the equations that are solved numeri-
cally. Many researchers, beginning with Buck & Su (1989)
and Scott & Stevenson (1989), have considered the possibi-
lity of active, porosity-driven upwelling beneath ridges.
Melting and magmatic flow within an actively convecting
sub-ridge mantle were modeled by Scott & Stevenson
(1989) and Spiegelman (1996); the pattern of convection is
similar to that modeled by Rabinowicz e al. (1984). These
models prescribe isoviscous conditions throughout the
domain, which may be a significant deficiency. In the nat-
ural ridge system the cold, rigid lithosphere above and the
viscosity reduction caused by ambient porosity in the melt-
ing region could have important effects. Porosity-induced
buoyancy, along with temperature and porosity-dependent
viscosity can be included in simulations that extend those
presented here.

Reactive channelization of magmatic flow is a chemical
instability that is thought to occur in the melting region
beneath ridges (Kelemen et al., 1995). High-flux magma
channels have implications for uranium-series disequilib-
rium, as well as trace element distribution and variability
in erupted lavas (Spiegelman & Kelemen, 2003). Past
models have considered reactive channelization in the con-
text of a static or uniformly upwelling mantle without
internal deformation. Combining tectonic-scale models,
such as those described here, with calculations of channel-
ized melt transport would illuminate the behaviour of a
channelized system in a deforming mantle with a cold,
impermeable lid. Calculations of geochemical transport
layered on top of such simulations would provide an input
for investigations of magma mixing and fractionation in
magma chambers beneath volcanoes (e.g. Maclennan,
2009).

Some workers have interpreted geological and geochem-
ical evidence to suggest that melt migration is extremely
rapid. For example, Maclennan et al. (2002) estimated

magmatic ascent rates of >50 m/yr based on eruption
rates in Iceland after the the last glacial period. It is
unlikely that porous magmatic flow, even if it is channel-
ized, could reproduce such rapid melt migration. If these
estimates prove correct, an alternative fluid-mechanical
model of melt migration involving flow in cracks and
dikes may be required.

Cracks and dikes are clearly responsible for melt trans-
port at shallow depths across the lithosphere. Off-axis
magmatism may tap pools of magma trapped along the
solidus boundary, as in Fig. 4b. Whether over-pressures
in such pools are sufficient to initiate hydrofracture is a
question for future work. Moreover, it is interesting to note
that for often-cited estimates of the compaction length of
10-1000 m, melt focusing is predicted to be inefficient and
melt pooling on the solidus is expected. If melting beneath
ridges is due to passive upwelling and if melt focusing
occurs according to the physics of porous flow and compac-
tion, then the compaction length remains a key param-
eter in explaining the high efficiencies that are expected.

Melting in subduction zones is more complex than
beneath ridges because of the effects of water. Subduction-
related magmatism has therefore received less attention.
Reactive flow may be a useful framework for considering
magma genesis in arcs, as it is for ridges (Grove et al.
2006). Along these lines, simulations by Katz (2005) of
infiltration of reactive, aqueous fluid into the mantle
wedge predict that channelization of fluid or melt occurs
above the slab where temperature increases upward.
These simulations consider a static mantle, however, and
thus neglect advection of porosity and solid depletion
through the wedge. A model of melt transport in a deform-
ing mantle wedge was described by Cagnioncle et al.
(2007). This work invoked a melt-focusing mechanism
based on that of Sparks & Parmentier (1991). However, by
neglecting compaction stresses and freezing, the model of
Cagnioncle et al. (2007) excluded the possibility of actually
resolving such behaviour. A subduction-zone model imple-
mented using the approach described here, augmented by
the inclusion of water as a thermodynamic component,
would provide a means for investigating reactive melting
as well as magmatic focusing in arcs.

The number of possible extensions to the work described
here indicates the utility of the Enthalpy Method. It pro-
vides a clean, transparent approach to incorporating ther-
mochemical complexity into models of magma dynamics.
Such complexity is required to address physical phenom-
ena such as magmatic focusing in a tectonic context. This
power comes at a cost of making the questionable assump-
tion of thermodynamic equilibrium between magma and
the mantle matrix. Coupling this approach with disequilib-
rium geochemical transport, however, may provide an
effective tool for making geochemical predictions that are
testable against measurements of lava chemistry.
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MAGMA DYNAMICS WITH THE ENTHALPY METHOD

APPENDIX A: CONSERVATION
OF BULK ENTHALPY AND

COMPOSITION

The
Eulerian volume V' bounded by a surface 9V containing
both fluid and matrix material. The change in time of the
energy contained in this volume is related to the flux across

derivation begins by considering an arbitrary

its boundary. Internal sources of heat, radioactive decay,
and viscous dissipation are not included in this derivation.
Rewriting equation (7),

E/H—f)g-xdr/z—/ (phv—pvg-x—kVT)-ndS

deJy v

(AD)

where we have also neglected the contribution of kinetic
energy because, for the mantle, it is very small relative to
the other terms. Applying Gauss’ theorem and allowing
the volume to shrink in size until it is small compared
with the length-scale of variation of any phase averaged

property but large relative to the grain size of the mantle,
we can write a differential form of equation (Al) as

oH ap . _
- x(a—f+V~W>+V-phv—g~W:V-kVT.

(A2)
Using the sum of conservation of mass equations (I) and
(2) and expanding the term describing the divergence of
the enthalpy flux in (A2) gives
oH
+ 0, (1 = OV - Vhy + prdvy - Vi —g-pv =V - kVT.
(A3)

This equation can also be derived by recasting equation
(A39) of Mckenzie (1984) as an equation for conservation
of enthalpy and neglecting viscous dissipation and internal
heating (J. Rudge, personal communication).
Assuming that the phase densities p, and p,, are con-
stant, the sum of equations (1) and (2) can be written
I

\& pf¢vf =-V.p, (1 =), +Ap—

” (A4)

where Ap =p,, — p,. Furthermore, for changes between
equilibrium states, the total differential of enthalpy can be
expressed in terms of total differentials of temperature and
pressure as (e.g. Denbigh, 198])

dh=cpdT+p~'(1 —aT)dP (A5)

where « is the coefficient of thermal expansion. Substitut-
ing (A4) and (AD) into (A3) and rearranging gives

oH 0
O 0LV (1 = 0w+l 8p % 4w VT

+(1—aT)v-VP—g-pv=FkiV’T

(A6)
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where L = hy —h, is the latent heat per unit mass.
The specific heat, diffusivity and thermal
expansivity have been assumed equal between phases.

Applying
P = Pr=p, and assuming a static pressure gradient,
VP = pg,

oH ‘
— —pLV-(1 = &), +pepV-¥T — paTg - v = kV>T

ot
(A7)

which states that changes in volumetric enthalpy are due to

thermal

the extended Boussinesq approximation,

advection of latent heat, advection of sensible heat, adia-
batic pressure changes and diffusion of sensible heat.

Equation (A7) can be simplified by substitution of
the potential temperature, which implicitly accounts
for adiabatic changes. Potential temperature 7 is defined
as

T = Texp (agz/cp) = T exp (aP/pecp). (A8)

Using equation (A8) and taking the z-coordinate to be
depth into the Earth, equation (A7) becomes

OH
- Toepexp (agz/cp)V -vT = pLV - (1 = d)v, (49)

+k exp (agz/ep)VAT.

In this equation, terms proportional to (ag/cp) < | have
been neglected.

Mass conservation for one thermochemical component
can be written for the same Eulerian volume as considered
above. If the concentration of this component is (rin the
fluid phase and C,, in the matrix phase,

d
v

- / [P, Crvy + pu(1 = §)Covi — prdDVCs] - A dS.
ar
(A10)

Applying the same reasoning as for the equation (7) and
taking p; = p,, = p, this equation can be rewritten in dif-
ferential form as

aC
S TV 0y G+ V(L= v, G, = DV §VC; (AlL)

where C'= ¢y + (1 = $)C,.

APPENDIX B: NON-
DIMENSIONALIZATION

Following Katz et al. (2007) we introduce a decomposition
of the fluid pressure into three parts

Pr=pgz+P+P (412)

where pgz is the lithostatic pressure, P = (¢ — 2n/3)V - v,
is the compaction pressure and P is the remaining,
‘dynamic’ pressure. Moreover, we introduce the following
dimensionless variables:

)
x=0x, v=uwyv, (=—1,
wo
/ / / wop -,
K=Kk, (P,P)=235Apg(P,P), F:TF,

(n’ é" E) = 770(77/’ ;/7 g/)

The velocity scale wy is given by

KA
wy = ~02PE (A13)
n
and the length scale, §, is
K
5= 2o (A14)
In

Using equations (3), (4) and (Al2), substituting nondimen-
sional variables, and dropping primes gives the equations
governing matrix shear and compaction:

V-vm:E (A415)
3
P .
—V-KVP+E:V-K[VP+g] (416)
VP =V-n(Vv, + Vv)) — 8. (417)

Here, g =g/lg| is the normalized gravity vector and
& =1¢—2n/3 is the compaction viscosity. The nondimen-
sional fluid velocity is

vf:vm—%[wurvmrg]. (418)

To nondimensionalize the conservation of energy
equation we introduce the nondimensional temperatures
T-T T-1T,

gL —To 5 T=To
Tl—T() TI_TO

where Ty and T are the minimum and maximum melting

(419)

temperatures over all compositions at atmospheric pres-
sure. The nondimensional bulk enthalpy is defined as
H =pcpATH' with AT = T) — Ty. Using nondimen-
sional variables in equations (8) and (9) and dropping
primes gives

OH 4 eV .30 = SV - (1 — d)v,, + Pe7 eV (420)
3C+ V- ovCr+ V- (1= )Wv,C, = Pe' V- GV (421)
Here, 9, is a partial derivative with respect to time,

A = 8ag/cp is the adiabatic parameter, S = L/(cpAT) is
the Stefan number, Pep = Swy/k is the thermal Peclet
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number, and Pec = dwy/D is the compositional Peclet
number. Equation (12), which describes the bulk enthalpy,
becomes

H=38b+6=38d+ 6+ 6 —0*
where 6% = Ty/AT.

(422)

APPENDIX C: THE ENTHALPY
METHOD FOR SYSTEMS WITH

MORE THAN TWO COMPONENTS

The Enthalpy Method can be generalized to N >2 compo-
nents in two phases (fluid and matrix). To do so requires
mathematical descriptions of the solidus and liquidus
surfaces in N dimensions. We seek a closure condition for
porosity and temperature as functions of bulk enthalpy
and composition. In this case, however, instead of solving
for the concentration of a single component in each phase
we must solve for all the N concentrations. It is convenient
to define N-component vectors Gy G,,, and G for the fluid,
matrix, and bulk concentrations respectively. These vectors
have the property that

N N
doci=1, Yoo =1, doci=1 (423)
=1 =1

=1

where a superscript ¢ represents the ¢th component of a
vector. This property allows us to trivially obtain the Nth
component of any vector if we know the other N—1
components. As in the case of a two-component system
where one PDE for bulk composition is solved, for an
N-component system N —1 partial differential equations
are used, each identical to equation (9) but each for a
different component. The equation that describes the
conservation of energy is unchanged from equation (8).
The problem is then to find closure conditions for
2N + 2 unknowns: ¢, T, Cs; and C,, as functions of /1 and
C.'Io do so, in addition to (A23), we have the equations

MAGMA DYNAMICS WITH THE ENTHALPY METHOD

C'=0C; + (1 - 9)C, (424)
C, =f£4(T, P, C) (425)
C;=f£,(T,P,C) (A426)

and equation (12), which defines bulk enthalpy as the
sum of sensible and latent heat. Here fg and f; are
N-component vector functions that give the matrix and
fluid phase compositions on the solidus and liquidus as a
function of pressure, temperature and bulk composition—
they define the phase diagram.

Combining equations (12) and (A24)—(A26) with the
constraint on bulk composition from equation (A23) gives
an expression for porosity:

N—1
; (H — opL
|—+ Ty, P, C
d);:f"( pep T )
N—1 N—1
’ (H — bol. ’ .
+(1—¢) Zf;(Tf"+ Ty, P, c) =y c
=1

=1

(427)

A value of ¢ from equation (A27) is substituted into
equation (12) to obtain the temperature, which is then be
used in equations (A25) and (A26) to calculate the phase
compositions. These values of ¢, T, G5 and C,, are used
in the differential equations for
bulk enthalpy and composition to construct a residual
vector suitable for use in Newton’s method (see Katz
et al., 2007).

The Enthalpy Method may be simplified by
prescribing a phase diagram in terms of (H, P, C) instead
of (T,P,C). To my knowledge, has
been implemented for more than two thermochemical

discretized partial

neither case
components and both raise the difficulty of reasonably
parameterizing the described by equations
(A25) and (A26).

surfaces
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