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 West antarctic peninsula: 
an ice-Dependent coastal marine 
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Wilhelmina Bay near Nansen island (62°18'0''S, 59°3'0''W), a 
popular cruise destination on the western antarctic peninsula. 
Photo by Natasja van Gestel, Texas Tech University
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iNtrODuc tiON
The marine ecosystem of the western 
Antarctic Peninsula (WAP) extends 
1,300 km from Alexander Island 
and the southern Bellingshausen Sea 
(70°S) to the northern tip of the pen-
insula and King George Island (62°S) 
at the southern end of Drake Passage 
(Figure 1). The Weddell Sea to the east 
and the Amundsen Sea to the west both 
include more southerly (higher latitude) 
embayments and are characterized by 
more extensive and persistent sea ice. 
The WAP region is distinctive among 
Antarctic regions, with its north-south 
geography and direct exposure to the 
prevailing westerly atmospheric and 
oceanic circulation. It is also distinct 
in its response to climate change, with 
strong sea ice decreases and rapid winter 
warming observed over the last three to 
five decades. The WAP system includes 
the immediate coastal region (0–300 m 
deep), the continental shelf region 
(300–1,000 m deep), and the continen-
tal slope region (> 1,000 m deep and 
about 200 km from the coast). The latter 
region is adjacent to where the Antarctic 

Circumpolar Current (ACC) flows. 
In common with the Arctic, but dis-

tinct from other coastal ecosystems, the 
variations in sea ice distribution and the 
freshwater inputs from melting sea ice 
and glacial ice are the dominant influ-
ences on ecological and biogeochemical 
processes in Antarctic coastal systems. 
As in other coastal systems, geomor-
phology and bathymetry play critical 
roles in structuring the WAP ecosystem 
(Schofield et al., 2013, in this issue, 
address some aspects of this). In com-
mon with most of the world’s coastal 
regions, the WAP system is profoundly 
affected by anthropogenic influences, 
including climate change, pollution, past 
exploitation of upper trophic level spe-
cies such as whales and seals, and cur-
rent exploitation of fish and krill stocks. 

There is a rich history of oceano-
graphic research in the region, start-
ing with the Discovery Investigations 
of 1924–1951 (Hardy, 1967). With a 
strong focus on Euphausia superba, the 
Antarctic krill, these studies formed the 
foundation of all subsequent research in 
the region and, indeed, throughout the 

aBStr ac t. The extent, duration, and seasonality of sea ice and glacial discharge 
strongly influence Antarctic marine ecosystems. Most organisms’ life cycles in this 
region are attuned to ice seasonality. The annual retreat and melting of sea ice in 
the austral spring stratifies the upper ocean, triggering large phytoplankton blooms. 
The magnitude of the blooms is proportional to the winter extent of ice cover, 
which can act as a barrier to wind mixing. Antarctic krill, one of the most abundant 
metazoan populations on Earth, consume phytoplankton blooms dominated by large 
diatoms. Krill, in turn, support a large biomass of predators, including penguins, 
seals, and whales. Human activity has altered even these remote ecosystems. The 
western Antarctic Peninsula region has warmed by 7°C over the past 50 years, and 
sea ice duration has declined by almost 100 days since 1978, causing a decrease in 
phytoplankton productivity in the northern peninsula region. Besides climate change, 
Antarctic marine systems have been greatly altered by harvesting of the great whales 
and now krill. It is unclear to what extent the ecosystems we observe today differ 
from the pristine state.
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Southern Ocean. More recently, inter-
disciplinary programs such as Research 
on Antarctic Coastal Ecosystem Rates 
(RACER; Huntley et al., 1991), FRUELA 
(a carbon flux study in the Antarctic 
Peninsula area; Anadón and Estrada, 
2002), and SO GLOBEC (Southern 
Ocean Global Ocean Ecosystems 
Dynamics; Hofmann et al., 2004) have 
made fundamental contributions to our 
understanding of the region.

Palmer Long Term Ecological 
Research (PAL) began in 1990 (Ducklow 
et al., 2007; Steinberg et al., 2012) by 
recording semiweekly observations of 
nearshore processes at Palmer Station 
(64.8°S, 64.1°W) between October and 
April, and by conducting a regional-scale 
cruise in January (Figure 1) each austral 
summer. PAL was built on intensive stud-
ies of Adélie penguin demography and 

feeding ecology carried out since the 
mid-1970s (Fraser and Trivelpiece, 1996) 
and on related oceanographic research 
(Ross et al., 1996). Operating since 1997, 
the Rothera Time Series (RaTS; Clarke 
et al., 2008) is a UK contribution to long-
term research in the WAP region. The 
British Antarctic Survey (BAS) conducts 
this study year-round in the nearshore 
ocean environment close to Adelaide 
Island, at approximately 67°S (Figure 1), 
allowing an unprecedented range of 
physical, biogeochemical, and biological 
variables to be measured continuously 
throughout the seasons. In this paper, 
we describe the physical setting, ocean 
environment, and ecological structure 
and dynamics of the WAP coastal region 
based on research by PAL (Ducklow 
et al., 2012) and the BAS (Meredith et al., 
2004; Clarke et al., 2007).

OceaNOgr aphy 
aND climate
The WAP’s coastal region (Martinson 
et al., 2008) is punctuated by islands, 
promontories, and small peninsulas, 
and includes a complex network of 
straits, bays, and passages between the 
islands and the continental mainland 
(Figure 1). A complex coastal circulation 
is associated with the irregular coast-
line and nearshore bathymetry, and it 
includes the recently described Antarctic 
Peninsula Coastal Current, which 
appears to be driven by winds and glacial 
meltwater inputs in the austral summer 
(Moffat et al., 2008). The coastal circula-
tion may serve to retain or transport 
plankton within the coastal region, but 
the spatial and temporal distributions 
of these effects are not well established. 
Along the peninsula, the seafloor deep-
ens abruptly to 200–300 m or deeper 
within a few kilometers of shore. It is 
bisected by the landward ends of several 
glacial-erosion submarine troughs and 
canyons that exceed 750 m in depth 
and extend across the continental shelf 
(Anderson, 1999). These features facili-
tate the upwelling of warm, nutrient-
rich Upper Circumpolar Deep Water 
(UCDW) that may support enhanced, 
predictable food supplies for foraging 
penguins (Fraser and Trivelpiece, 1996; 
Schofield et al., 2013, in this issue). 

The changing regional climate is dis-
cussed in detail elsewhere (Turner et al., 
2009), but it should be noted here that 
the WAP exhibits among the most rapid 
rates of regional warming anywhere, 
especially in winter (+7°C since 1950, or 
five times the global annual mean). The 
average annual winter (JJA) and summer 
(DJF) air temperatures are –1.5, –4.9, 
and +1.4 °C, respectively, for the period 
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Figure 1. map of study region along the western antarctic peninsula. The small dots are regu-
lar hydrographic stations, colored to indicate the percent meteoric water (predominantly 
glacial melt) in the water column in january 2011 (meredith et al., 2013). red letters show 
locations of palmer (p) and rothera (r) stations. kg = king george island. c = charcot island. 
hydrographic lines (colored dots) are 100 km apart (north to south) and 20 km apart (cross 
shelf). The continental shelf break is to the left. 
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1989–2009 (http://oceaninformatics.
ucsd.edu/datazoo/data/pallter/datasets). 
The ocean in the region is also warming 
greatly, with a rise in surface ocean tem-
perature in excess of 1°C measured dur-
ing the second half of the twentieth cen-
tury (Meredith and King, 2005). Part of 
this upper-ocean warming is thought to 
be of atmospheric origin, with the trans-
fer of heat facilitated by greater amounts 
of ice-free waters from spring to autumn. 
The deeper ocean has warmed tre-
mendously as well (Martinson et al., 
2008). A strong source of the heat 
input to the WAP region is the inflow 
of warm, mid-depth UCDW from the 
ACC, where warmer intrusions along 
the glacially scoured canyons impinge 
on the inner shelf regions (Martinson, 
2012; Martinson and McKee, 2012). 
The warming from above and below 
has resulted in the rapid retreat of the 
majority of glaciers along the peninsula 
(Cook et al., 2005), with significant con-
sequences for the coastal ecosystem.

FreShWater iNputS FrOm 
Sea ice aND gl acierS
The duration, extent, and seasonal-
ity of sea ice are the principal physical 
determinants of variability in ecosystem 
dynamics in coastal Antarctic marine 
ecosystems. Indeed, sea ice in the WAP 
region is highly variable year to year and 
is changing rapidly (Figure 2). The recent 
warming and increase in regional winds 
have resulted in significant shortening 
of the winter ice season (or, conversely, 
lengthening of the summer ice-free 
season). In the Palmer Station region 
in the north (Figure 2a), the ice season 
duration has become, on average, about 
92 days shorter over 1979/80 to 2012/13 
(± 41 days; or –2.7 ± 1.2 days/year, 

p = 0.02). These seasonal sea ice changes 
are largely wind driven (Holland and 
Kwok, 2012; Maksym et al., 2012). 
Strong northerly winds drive the ice edge 
southward, delaying ice edge advance 
in autumn and accelerating its retreat 
in spring, often synoptically with each 
passing storm (Stammerjohn et al., 
2003; Massom et al., 2008). Increased 
solar ocean warming in summer (due 
to earlier and longer ice-free condi-
tions) is also contributing to the sea ice 
changes, acting as a positive feedback to 
enhance and sustain the rate of warming 
and sea ice retreat (Meredith and King, 
2005; Stammerjohn et al., 2011). The 
WAP and southern Bellingshausen Sea 
show the largest and fastest Antarctic 
sea ice decreases, on a par with the larg-
est regional decreases in Arctic sea ice 
(Stammerjohn et al., 2012). 

The north-south oriented WAP pres-
ents a strong latitudinal climate gradient 
both in temperature and sea ice, charac-
terized by a shorter ice season and more 

maritime conditions in the north (e.g., in 
the Palmer Station vicinity) and a longer 
ice season and more continental condi-
tions in the south (e.g., in the Rothera 
Base vicinity). The region-wide decreases 
in sea ice are therefore manifested dif-
ferently north to south (Figure 2). In the 
north, the sea ice season barely exists 
anymore (e.g., the 2006–2012 declin-
ing sea ice cover near Palmer Station 
shown in Figure 3a). In fact, there are 
indications that in recent times, relatively 
little sea ice grows in situ in the Palmer 
Station vicinity (compared to earlier 
years in the 1979-to-present satellite 
record; Stammerjohn et al., 2008a,b). 
The ice cover there is largely ephemeral, 
blowing in and out of the area with each 
passing weather system. Meanwhile, in 
the south, where there was once peren-
nial ice cover, the summer season is now 
increasingly ice-free.

Embedded within these north-south 
seasonal sea ice changes are near-
coastal changes as well. In autumn, the 
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most notable feature is a tendency for 
open water to persist until early winter 
(June–July) in an elongated polynya-like 
feature extending from the northern tip 
of the peninsula to just south of Palmer 
Station (Turner et al., 2012). This fea-
ture, associated with ocean-warmed 
air temperatures, likely impacts species 
that require sea ice during this time of 
year (see below). In spring, with more 
frequent wind-driven sea ice retreats, 
sea ice is advected southward and piles 
up along the coast. This causes sea ice 
retreat to be early over the continental 
shelf but late along the coast (Massom 
et al., 2006; Smith et al., 2008), and this 
affects the timing and location of phy-
toplankton blooms in spring and the 
redistribution of freshwater. 

A consequence of the rapidly 

retreating sea ice and the shortening 
sea ice season in the WAP region is the 
greater exposure of the ocean to the 
atmosphere and, consequently, greater 
mixing of the upper ocean due to both 
mechanical (wind-driven) processes 
and buoyancy-driven mechanisms. This 
greater vertical mixing spreads the glacial 
melt received by the nearshore ocean 
over progressively deeper layers, and, 
hence, it reduces surface concentrations. 
This has potentially significant conse-
quences, especially for the availability of 
micronutrients supplied by glacial melt, 
which may be decreasing in the eupho-
tic zone despite the possible increase 
in their overall supply due to accel-
erating deglaciation.

The spatial distribution of freshwater 
inputs from meteoric sources (Figure 1) 

allows the nearshore RaTS data, south of 
the PAL area, to be contextualized over 
the scale of the WAP shelf (Meredith 
et al., 2013). At the RaTS site itself, cal-
culations based on the stable isotopes 
of oxygen in seawater (δ18O) indicate 
that meteoric water (predominantly in 
the form of glacial melt) dominates the 
oceanic freshwater budget, with values of 
up to 6% of the overall mass of the water 
(Meredith et al., 2013). By compari-
son, sea ice melt contributes much less 
(maximum around 2%). On the broader 
scale, particularly strong inputs of glacial 
melt are seen at specific coastal loca-
tions along the WAP, most notably close 
to Anvers Island (near Palmer Station), 
Adelaide Island (close to Rothera), 
Alexander Island, and Charcot Island 
(Figure 1). These locations correspond 
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to regions of strong precipitation over 
the adjacent catchment areas on the pen-
insula, with strong consequent glacial 
discharge to the ocean. The exception is 
Charcot Island where the high freshwater 
concentration is presumed to be due 
to the southward nearshore circulation 
along the WAP, and possibly the recent 
collapse of the Wilkins Ice Shelf. 

mixeD l ayer Depth, 
Str atiFicatiON, aND 
phytOpl aNktON BlOOmS
Antarctic coastal regions experience 
intense phytoplankton blooms triggered 
by sea ice retreat. At the RaTS site at 
Rothera Base just inside the Antarctic 
Circle (67.5°S), phytoplankton experi-
ence about three weeks of complete 
darkness each year. In contrast, there is 
sunlight throughout the year at Palmer 
Station (64.8°S), but it is much reduced 
during winter (large incidence angle and 
short day length). From May through 
August (austral fall/winter), primary 
production rates at Palmer are near the 
limits of detection by the 14C method, 
and chemolithotrophic organisms domi-
nate the microbial assemblage (Grzymski 
et al., 2012). At Rothera Base, phyto-
plankton growth begins to exceed loss 
rates from respiration, grazing, and viral 
lysis soon after the winter minimum in 
solar irradiance (Venables et al., 2013), 
resulting in the large blooms that follow 
the ice retreat (Figure 3; see also Clarke 
et al., 2008), with peak chlorophyll a 
(Chl-a) typically occurring between 
November and February.

Freshwater inputs from melting sea 
ice in the coastal zone combine with 
glacial runoff to generate a strong 
cross-shelf gradient in summertime 
mixed layer depth (MLD; Figure 4a). 

MLD clearly differentiates the shelf and 
coastal regions into two regimes: a nar-
row (40 km) coastal zone with summer 
MLD of approximately 5–10 m and a 
mid-shelf/slope region with MLD of 
25–50 m or greater. Across the WAP, 
the mixed layer is deeper in winter 
than summer due to wind mixing and 
buoyancy loss (cooling and brine rejec-
tion from sea ice production in winter). 
Moreover, changes in winter MLD can 
affect vertical stratification in summer. 
For example, changes in sea ice during 

the preceding winter strongly influence 
interannual variability in summertime 
vertical stratification at the RaTS site in 
the south (Venables et al., 2013). This 
effect is produced by the greater expo-
sure of the ocean to the atmosphere 
during winters with reduced sea ice 
coverage due primarily to wind-driven 
advection. The reduced sea ice coverage 
enables greater wind-induced mixing of 
surface waters and also increased buoy-
ancy loss due to prolonged ice produc-
tion. Combined, these effects produce 

Figure 3. time series of surface chlorophyll (upper 15 m, green) and sea ice cover (violet) 
at palmer (a) and rothera Stations (b). Sea ice cover is based on Smmr-SSm/i imagery 
at palmer (see Figure 2) and local observations of fast ice concentration at rothera. The 
darker green indicates chlorophyll under sea ice. Black bars indicate chlorophyll sam-
pling gaps > 21 d. Sampling at palmer was weekly after 1996 when ice and wind condi-
tions permitted, with a gap for 2008–2009. Sampling at rothera is weekly throughout 
the record, when ice and wind conditions permit. Note that ice cover at rothera still 
reaches 100% in most years, at least briefly. in the palmer Station region, the ice cover is 
almost always < 70%. 
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anomalously deep winter mixed layers 
during years with light ice cover. Year-
round sampling showed that winter 
MLD exceeded 100 m in light ice years 
(Venables et al., 2013). In contrast, the 
winter MLD was just 25–50 m in years 
with heavier, longer-lasting sea ice cover. 
The mean summer stratification was 
about twice as great following high ice 
winters as following low ice winters. 
The differences in stratification, and 
resulting vertical mixing and light avail-
ability, have clear implications for phyto-
plankton growth (see graph of ice and 
Chl-a in Figure 3b).

There is a clear first-order relationship 
between shallow MLD and summertime 
primary production (Figure 4a,c). In 
low ice years, MLD at RaTS shoals at 
an approximately constant rate, from 
100 m in early September to ~ 10 m 
by mid-December, whereas in high ice 
years, the winter MLD is already fairly 

shallow (25–50 m). Although bloom 
initiation was the same in the high and 
low ice regimes, the bloom magnitude 
was greater in high ice years under the 
more stratified conditions and greater 
integrated mixed layer light availability. 
In the northern part of the WAP over the 
past three decades, primary production 
has declined as sea ice cover has dimin-
ished and wind mixing has increased 
(Montes-Hugo et al., 2009). These 
changes at the base of the food web are 
beginning to reverberate through the 
entire coastal ecosystem as sea ice and 
winds continue to change. 

Among the coastal systems in the 
Long Term Ecological Research (LTER) 
network (Table 1), there is a clear dis-
tinction between the productivity of 
pelagic systems dominated by phyto-
plankton and systems with macrophyte 
producers. The annual net primary 
production in the Palmer region is 

about the same as near Bermuda in the 
oligotrophic subtropical open sea, and 
it is dwarfed by the marsh and seagrass 
systems of the eastern and western US 
coasts. Even so, primary production 
along the WAP and in other coastal 
regions of Antarctica is greater than 
in the open Southern Ocean because 
ice-edge phytoplankton blooms focus 
most of the annual primary production 
in a brief growing season, providing 
ample phytoplankton stocks for krill 
and other macrozooplankton herbivores 
(Ross et al., 2008). 

SecONDary prODuc tiON 
aND tOp preDatOrS
Traditionally, Antarctic marine ecosys-
tems are believed to be dominated by 
the Antarctic krill Euphausia superba 
and its predators (Murphy et al., 2013). 
E. superba is a shrimplike crusta-
cean zooplankter about 2–5 cm long 
(Figure 5). Antarctic krill form a critical 
link between diatom primary producers 
and the large stocks of marine mam-
mals and seabirds, including the Adélie 
penguins that are the iconic species of 
Antarctic ecosystems. Distribution of 
krill around the continent is extremely 
variable and patchy, with large swarms 
reported to contain more than 100 indi-
viduals per m3 (Tarling et al., 2009). Krill 
stocks average about 200–6,000 mgC m–2 
in areas of low to high krill concentra-
tions, respectively (Pakhomov et al., 
2002). Along the peninsula, E. superba 
stocks average 10–250 individuals 
per 1,000 m3 (Ross et al., 2008), or 
~ 85–2,125 mgC m–2. Antarctic krill 
are usually thought to be a shelf-slope 
species found over the continental shelf 
and in the open sea, rather than in the 
immediate coastal zone (Atkinson et al., 

Figure 4. (a) mixed layer depth (decibars; martinson et al., 2008), (b) water column 
chlorophyll (mg m–2), and (c) primary production rate (mgc m–2 d–1) in the region between 
anvers island in the north and marguerite Bay in the south. These plots are averaged for 
cruises undertaken from 1993 to 2012. The immediate coastal region in the south part of the 
study area (including the rothera time Series [ratS] site at rothera Base) is not contoured 
because marguerite Bay extends more than 100 km farther to the east and is not surveyed 
regularly. The dashed and solid white lines denote the continental shelf break at > 1,000 m, 
and coastal zone < 300 m.
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table 1. annual net primary production rates in selected coastal long term ecological research and oceanic sites.

Site Primary Producer(s)
Rate

(gC m–2 yr–1) References

palmer, antarctica (pal)
phytoplankton (coastal 1993–2012) 180 Vernet et al. (2008)

macroalga Himantothallus grandifolius 16–56 Wiencke and amsler (2012)

california current ecosystem (cce) phytoplankton (coastal, upwelling, 1984–2013) 390 r. goericke*

Bermuda atlantic time Series (BatS) phytoplankton (open sea) 157 lomas et al. (2013)

Florida coastal everglades (Fce) Seagrasses, macroalgae, periphyton, mangroves 853–1,166
herbert and Fourqurean (2009);  
l. collado-Vides, V.h. rivera, j. Fourqurean*; 
 castañeda-moya et al. (in press)

georgia coastal ecosystems (gce)
marsh grasses (aboveground) 675 pennings et al. (2012)

phytoplankton 280 pennings et al. (2012)

plum island ecosystems, ma (pie) marsh grass (aboveground) 350 a. giblin, j. morris* 

Santa Barbara coastal, ca (SBc) kelp forest 1,200 reed et al. (2008); harrer et al. (in press)

Virginia coast reserve (Vcr) Seagrasses and marsh grass (aboveground) 300–450 kirwan et al. (2012); k. mcglathery*

* personal communications, 2013

Figure 5. Some exemplary large organisms of the western antarctic peninsula (Wap). (a) The overstory brown macroalga Cystosphaera jacquinotii, which can 
co-dominate with other large brown algae in benthic communities along the Wap. The spherical structures are gas-filled floats that allow the alga to rise two or 
more meters off the bottom. The oblong structures are reproductive elements. Photo by C.D. Amsler. (b) adult antarctic krill Euphausia superba. The green color 
is from phytoplankton in the gut. Photo by A. McDonnell. (c) adult adélie penguin Pygoscelis adeliae and a two week-old chick at torgersen island, one kilometer 
from palmer Station. Photo by W. Fraser

a c

b



Oceanography |  Vol.  26, No. 3198

2008). The cold, fresh coastal zone is the 
preferred habitat of the crystal or ice krill 
Euphausia crystallorophias. More than 
50 crystal krill individuals per 1,000 m3 
have been documented in the WAP 
study region (Ross et al., 2008). 

These general patterns appear to be 
changing. Antarctic krill are locally 
abundant on the inner shelf near Palmer 
Station (> 100 individuals per 1,000 m3; 
Ross et al., 2008), where they are the 
principal prey of the Adélie penguin 
Pygoscelis adeliae. The Adélie penguins 
that breed and forage in the Anvers 
Island area (near Palmer Station) have 
been studied intensively since 1975 
(Fraser and Trivelpiece, 1996; Fraser 
and Hofmann, 2003). Cohorts of 
Antarctic krill year classes can be fol-
lowed through four- to five-year cycles in 
Adélie penguin diet samples (Fraser and 
Hoffman, 2003). Significant krill recruit-
ment events occurred in 1991–1992, 
1995–1997, and 2000–2003, 2006–2007, 
and 2010–2011 (Figure 6; data derived 
after Fraser and Hoffman, 2003). Krill 
recruitment success is related to heavy 
winter sea ice (Fraser and Hoffman, 
2003), and declining sea ice extent and 
duration in the Palmer Station region 

may be contributing to the decline of 
the krill (Atkinson et al., 2004), as well 
as the Adélie population, as discussed 
further below.

Krill also support a large popula-
tion of crabeater seals (Lobodon carci-
nophagus) and an increasing number 
of fur seals (Arctocephalus gazella, see 
below) throughout the region (Costa 
and Crocker, 1996; Chapman et al., 
2004; Siniff et al., 2008). In addition to 
crabeaters, baleen whales (humpback, 
Megaptera novaeangliae, and minke, 
Balaenoptera bonaernsis) pursue krill into 
coastal fjords in the fall and winter. This 
large coastal assemblage of krill grazers 
is preyed on by leopard seals (Hydrurga 
leptonyx) and killer whales (Orcinus 
orca), and together all these species of 
ice-loving and ice-tolerant mammals and 
birds constitute one of the largest com-
munities of warm-blooded top predators 
on the planet (Steinberg et al., 2012). 

The classical explanation for the large 
stocks of “charismatic megafauna” in 
Antarctic coastal regions is that the food 
web is short and efficient, dominated 
by large-celled diatoms and Antarctic 
krill, the main prey of all the large preda-
tors (Knox, 2006). However, Antarctic 

seas also harbor active microbial food 
webs (Hewes et al., 1990), initiated by 
increasing stocks of smaller-celled phy-
toplankton such as cryptophytes that are 
too small to be ingested by krill (Moline 
et al., 2004; Montes-Hugo et al., 2009; 
Huang et al., 2012). These small primary 
producers now account for 20–90% of 
the primary production in the Palmer 
region (recent work of author Sailley and 
colleagues) and are grazed by microzoo-
plankton (Lori Garzio, Virginia Institute 
of Marine Science, and colleagues, pers. 
comm., 2013). In turn, microzooplankton 
may constitute a large part of the krill 
diet. The extra trophic level between pri-
mary producers and krill causes a reduc-
tion in trophic efficiency. Even so, the 
measured primary production and krill 
stock in the region is sufficient to support 
present-day seal population levels and 
historical stocks of penguins 10 times 
larger than current levels (recent work of 
author Sailley and colleagues).

BeNthic cOmmuNitieS
Hard-substrate communities are wide-
spread along the WAP benthos, particu-
larly in the northern half of the region. 
Large perennial brown macroalgae 
dominate in shallow waters to depths of 
40 m or greater, with biomass commonly 
in the range of 5–10 wet kg m–2 and cov-
erage of the bottom commonly ranging 
above 80% (Wiencke and Amsler, 2012). 
Desmarestia anceps and D. menziesii usu-
ally dominate in shallower waters, with 
Himantothallus grandifolius dominat-
ing deeper, although other large brown 
algae such as Cystosphaera jacquinotii 
(Figure 5a) can co-dominate with 
D. anceps or H. grandifolius (Wiencke 
and Amsler, 2012). Estimates of pri-
mary productivity are available only for 
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Figure 6. Size-frequency occurrence of antarctic krill Euphausia superba in diet samples from nesting 
and actively foraging adélie penguins at palmer Station, 1987–2011. The diet composition data were 
obtained as described in Fraser and hoffman (2003). 
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H. grandifolius and are in the range of 
16–56 gC m–2 yr–1 (Wiencke and Amsler, 
2012). Red macroalgae dominate the 
understory in these communities, but 
they are not as important in terms of 
cover or biomass but are very important 
in terms of species richness. 

The macroalgal-dominated com-
munities support rich assemblages of 
invertebrates, particularly amphipods 
(Huang et al., 2007), although gastro-
pods and echinoderms are also abundant 
(White et al., 2012). Amphipod densities 
in D. menziesii and D. anceps canopies 
have been estimated at over 300,000 and 
30,000 individuals m–2 of the benthos, 
respectively (Amsler et al., 2008). All of 
the dominant brown and most of the 
abundant red macroalgae are chemi-
cally defended from being consumed 
by amphipods and other grazers. As 
macroalgae in the northern and central 
WAP lose their dominance with increas-
ing depths, rich communities of sessile 
invertebrates replace them. Sponges are 
usually the most important members 
of these communities. However, tuni-
cates, bryozoans, and soft corals are also 
numerically important and any of these 
can co-dominate at specific locations. 

 
Wap ecOSyStem reSpONSe tO 
aNthrOpOgeNic FOrciNg
The WAP region is warming faster than 
almost all other areas on the planet, 
and the extent, duration, and season-
ality of sea ice cover are also rapidly 
changing. The extent to which these 
changes are anthropogenic in nature 
(as opposed to being part of natural 
variation of the climate system) is an 
ongoing subject of research. It has been 
hypothesized that the greater influx 
of warmer UCDW from the ACC is 

the consequence of strengthening and 
southward-shifting winds over the 
Southern Ocean, often quantified by 
the movement of the Southern Annular 
Mode (SAM) to a more positive state. 
These atmospheric changes could induce 
stronger upwelling (Waugh et al., 2013) 
and onshelf flow at the WAP shelf break 
and, hence, permit greater quantities 
of warmer water to intrude along the 
canyons toward the coast. The SAM is 
also strongly implicated in the direct 
atmospherically forced changes impact-
ing the WAP, along with the El Niño-
Southern Oscillation phenomenon 
via teleconnections with the tropical 
Pacific. Movement of the SAM to a more 
positive state is well described (Marshall 
et al., 2004; Thompson et al., 2011), and 
it is increasingly seen that the depletion 
of stratospheric ozone is a key factor in 
this forcing, along with contributions 
from greenhouse gas emissions (Lee and 
Feldstein, 2013). However, these anthro-
pogenic forcings will have natural vari-
ability superimposed, and not all aspects 

of the WAP warming can currently be 
explained in terms of anthropogenic 
effects and changes in atmospheric cir-
culation. Further research is needed; 
nonetheless, significant human impacts 
on the WAP climate are strongly implied.

Most native species in the region, 
from diatoms to whales, are ice-obligate, 
with successful completion of their life 
cycles requiring sea ice cover and a par-
ticular phenology of sea ice advance and 
retreat (Ducklow et al., 2012). Since at 
least the 1970s, rapid warming, sea ice 
loss, and, possibly, other related climate 
changes (Fraser et al., 2013, in this issue) 
have resulted in an 80% decline in the 
Adélie penguin population in the Palmer 
region (Figure 7). Concurrently, Gentoo 
penguins, a sub-Antarctic, non-ice-
requiring species, are immigrating and 
successfully establishing breeding popu-
lations in the region. Gentoos now make 
up over half the total penguin breeding 
community. The conspicuous changes 
in penguins were just the first changes 
to be noted in the WAP (Ainley, 2002). 

Figure 7. population census data for adélie, chinstrap, and gentoo penguins in the palmer 
Station region, 1975–2012. after declining since the late 1970s, the total penguin population 
(breeding pairs) in the region has been increasing since 2008 due to the rapid growth and 
immigration of gentoos in the region. Over half the penguins in the region now are gentoos.
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Changes in krill stocks, phytoplankton 
composition, and other ecosystem prop-
erties have now also been documented. 
A synthesis of these observations sug-
gests possible future changes in ecosys-
tem structure from dominance by krill 
toward a food web with more microbial 
herbivores and bacteria (recent work of 
author Sailley and colleagues). 

Macroalgal assemblages in the south-
ern WAP have much lower biomass and 
diversity than those described above for 
the northern WAP, and these southern 
WAP communities appear to be typi-
cal of those at similar latitudes around 
the continent (Wiencke and Amsler, 
2012). The change occurs somewhere 
between 64°S and 67°S, unfortunately by 
far the least-studied area of the WAP in 
terms of benthic community structure. 
Moe and DeLaca (1976) hypothesized 
that the decrease is due to decreased 
annual irradiance because of increased 
sea ice cover. It seems likely that richer 
macroalgal-dominated communi-
ties typical of the northern WAP are 
expanding to the south as annual sea ice 
declines, but without either historical or 
current information on the nearshore 

benthic communities of this region, this 
hypothesis cannot be tested. 

The striking decline of the Adélie 
penguins has made the WAP emblematic 
of polar climate change, but it would be 
a mistake to attribute the many ecologi-
cal changes manifesting in the region 
as simple reflections of climate warm-
ing and sea ice loss alone. Although 

circumpolar ocean and atmospheric 
circulation partially isolate the continent 
of Antarctica from the rest of the global 
climate system, they do not form an 
impermeable barrier. Persistent organic 
pollutants (POPs), including DDT, DDE, 
PCBs, and more exotic compounds, 
“leapfrog” to both polar regions via 
successive cycles of volatilization, atmo-
spheric transport, deposition, and revol-
atilization before condensing in cold, 
high-latitude areas (Dickhut et al., 2005). 
Ironically, net transport of volatile POPs 
from warmer to colder areas results in 
greater concentrations remote from 
source regions in the temperate zones 
and tropics. As an extreme example of 
this pattern, the glacier behind Palmer 
Station is a current source of DDT to the 
local food web, despite a worldwide ban 

on DDT production (Geisz et al., 2008). 
Once immobilized in polar regions, 
POPs enter and concentrate in phyto-
plankton and krill (Chiuchiolo et al., 
2004) and in penguins, giant petrels, and 
skuas (Geisz, 2010). The consequences 
of POPs in Antarctic marine food chains 
are unknown. The body burdens are 
sublethal, but may influence responses to 
other stressors, including warmer tem-
peratures, acidification, and altered ice 
and breeding phenologies.

Climate change and transequatorial 
pollutant transport notwithstanding, 
the most profound effects on the WAP 
system are likely the result of human 
predation. Whaling, sealing, and, 
later, harvesting of fish and krill have 
removed top and intermediate preda-
tors from the WAP system, an example 
of “fishing down the food web” (Pauly 
et al., 1998; Ainley and Pauly, 2013). 
The human exploitation of Antarctica 
began following the discovery of fur 
seal colonies in the South Shetland and 
South Orkney Islands in 1819–1820, 
resulting in extirpation of the population 
by 1904. Soon thereafter, whaling began 
in earnest, and few baleen whales were 
left for the taking by the 1920s (Ainley 
and Pauly, 2013). As articulated in the 
“Krill Surplus Hypothesis” (Laws, 1985), 
the near extirpation of the great whales 
from most Southern Hemisphere waters 
by the mid-twentieth century prob-
ably decreased predation pressure on 
Antarctic krill, leaving more food avail-
able for penguins and crabeater seals and 
leading to population increases in those 
species. But, this effect is complicated by 
several factors, including the recovery 
of baleen whales and fur seals following 
the (incomplete) moratorium on whal-
ing in most sectors of Antarctica by the 

“like Other cOaStal regiONS arOuND the 
WOrlD, the [WeSterN aNtarctic peNiNSula] 
ecOSyStem iS exhiBitiNg cOmplex aND iNcreaSiNgly 
rapiD chaNgeS Due tO the cOmBiNeD eFFectS 
OF climate chaNge (partially aNthrOpOgeNic), 
FiSherieS OVerharVeStiNg, aND pOllutiON.” 
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International Whaling Commission 
in 1982. Adding further to the puzzle, 
Adélies began to decline (not increase) 
in the late 1970s, even before the whale 
recovery began to take off, implicating 
climate change as an additional factor in 
Antarctic population dynamics (Fraser 
et al., 1992). This controversy rages on. 
Trivelpiece et al. (2011) note concur-
rent declines in ice-obligate Adélies 
and ice-avoiding Chinstrap penguins, 
and argue against a direct effect of sea 
ice decline and in favor of variations in 
krill availability (perhaps caused by ice 
decline) as the major controlling factor 
on penguin populations. In this issue, 
Fraser et al. (2013) indicate that the 
exposure of penguin colonies to prevail-
ing winds and snow accumulation on 
north- vs. south-facing slopes has caused 
differential colony extinction rates in 
the Palmer region. Climate change, top-
down effects resulting from fisheries 
harvests, and the entry of pollutants into 
the region all combine to drive changes 
in the Antarctic marine ecosystem. These 
changes are currently most prevalent 
on the WAP, but may threaten the rest 
of the Antarctic coastline in the future 
(Turner et al., 2009).

Summary
Sea ice melting and glacier runoff 
strongly influence the coastal zone of 
the western Antarctic Peninsula, leading 
to very shallow mixed layers and locally 
high primary production. These condi-
tions support sufficient krill stocks to 
feed both currently low and historically 
large populations of penguins and other 
predators. Primary production is low in 
comparison to most other coastal sites 
dominated by macrophytes, but simi-
lar to pelagic production in temperate 

and subtropical sites. Like other coastal 
regions around the world, the WAP 
ecosystem is exhibiting complex and 
increasingly rapid changes due to the 
combined effects of climate change 
(partially anthropogenic), fisheries over-
harvesting, and pollution. The Antarctic 
coastal system, once dominated by large 
organisms at all trophic levels, appears 
to be transitioning toward a microbe-
dominated system. A paradox of the 
Southern Ocean is that it is simultane-
ously one of the most comprehensively 
protected of global marine systems, 
owing to the Antarctic Treaty, and one of 
the most impacted, as a consequence of 
rapid climate change, human exploita-
tion, and the novel poleward transport of 
anthropogenic compounds. 
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