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Abstract

Satellite measurements of time-variable gravity are a new data type, capable of
addressing a wide variety of geophysical problems. This subject, in its present form,
began with the 2002 launch of GRACE (the Gravity Recovery And Climate Experi-
ment). GRACE has been providing regular monthly estimates of the Earth’s gravity
field down to scales of several hundred kilometers. Any process that involves enough
re-distribution of mass at those temporal and spatial scales is a possible target for
GRACE. There are applications for hydrology, oceanography, the cryosphere, and the
solid Earth. This chapter summarizes the observational and theoretical framework
used to interpret time-variable satellite gravity measurements, and reviews some of the
evolving geophysical applications of this technique.

1 Introduction

The Earth’s gravity field is a product of its mass distribution; mass both deep within the
Earth and at and above its surface. That mass distribution is constantly changing. Tides
in the ocean and solid Earth cause large mass variations at 12-hour and 24-hour periods.
Atmospheric disturbances associated with synoptic storms, seasonal climatic variations, etc.,
lead to variations in the distribution of mass in the atmosphere, the ocean, and the water
stored on land. Mantle convection causes mass variability throughout the mantle that has
large amplitudes compared to those associated with climatic variability, but that generally
occurs slowly relative to human timescales.

Because of these and other processes, the Earth’s gravity field varies with time. Obser-
vations of that variability using either satellites or ground-based instrumentation, can be
used to study a wide variety of geophysical processes that involve changes in mass (Dickey et
al., 1997). Solid Earth geophysics is not the prime beneficiary of time variable gravity mea-
surements. Instead, most of the time-variable signal comes from the Earth’s fluid envelope:
the oceans, the atmosphere, the polar ice sheets and continental glaciers, and the storage of
water and snow on land. Fluids (water and gasses) are much more mobile than rock.

Solid Earth deformation does have a significant indirect effect on ground-based gravity
measurements. A gravimeter on the Earth’s surface is sensitive to vertical motion of that
surface. When the surface goes up, the gravimeter moves further from the center of the
Earth and so it sees a smaller gravitational acceleration. For most solid Earth processes
the signal from the vertical displacement of the meter is far larger than the actual gravity
change caused by the displaced mass. Thus a surface gravimeter can, in effect, be viewed as
a vertical positioning instrument. A satellite, on the other hand, is not fixed to the surface,
and so the gravity signals it detects are due entirely to the underlying mass distribution.
Thus, satellite gravity provides direct constraints on that mass.

1.1 Non-uniqueness

One serious limitation when interpreting gravity observations is that the inversion of gravity
for density is non-unique. There are always an infinite number of possible internal density
distributions that can produce the same external gravity field. Even perfect knowledge of
the external gravity field would not provide a unique density solution.
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As a simple illustration of this non-uniqueness, consider the gravity field outside a sphere.
The external gravitational acceleration is g = MG/r2, where M is the total mass of the
sphere, G is the gravitational acceleration, and r is the distance to the center of the sphere.
This same expression holds whether the mass is uniformly distributed throughout the sphere,
or is localized entirely at the outer surface, or has any other radially-dependent distribution.
By observing the external gravity field in this case, all that could be learned is the total mass
of the sphere and the fact that the internal density is spherically symmetric. The details
of how the density is distributed with radius would remain unknown. This non-uniqueness
would disappear if the gravity field everywhere inside the sphere were also known. But
knowledge of the external field alone is not enough.

This non-uniqueness is a major limitation when interpreting the Earth’s static gravity
field. For example, Figure 1 shows a map of the Earth’s static geoid anomaly, as determined
by Lemoine, et al., (1998) from decades of satellite and surface observations. The geoid is the
surface of constant potential that coincides with mean sea level over the ocean. The geoid
anomaly is the elevation of the geoid above its mean ellipsoidal average. This is a common
method of representing the Earth’s gravity field, one that emphasizes the long wavelength
characteristics of the field. There is a tradeoff between amplitude and depth when using this
map to constrain the Earth’s time-averaged mass distribution. For example, from this map
alone it is not possible to know whether the large red feature over Indonesia is caused by
a large positive mass anomaly in the crust, or a much larger mass anomaly deeper in the
mantle.

But Figure 1 clearly does contain information about the Earth’s internal density. Not ev-
ery density distribution can produce the same gravity field. The results provide a constraint
on a weighted vertical average of the underlying mass anomalies. Static gravity observations
are particularly useful when combined with independent information or assumptions about
the depth of the density anomaly, or its amplitude, or its spatial pattern.

1.2 Time-variable gravity

Non-uniqueness is much less of an issue for time-varying gravity. Time-varying signals, if
they vary rapidly enough, can usually be assumed to come from mass variability at the
Earth’s surface rather than from deep within the Earth. For example, Figure 2a shows
the amplitude of the annual cycle in the geoid as observed from the Gravity Recovery and
Climate Experiment (GRACE; see below). It is almost certain that this signal is coming
from some combination of the atmosphere, the oceans, and the water/snow/ice stored on or
just below the land surface. Few solid Earth processes are likely to vary this rapidly, let alone
to show an annual cycle. The only exceptions are the body tide, which can be modeled and
removed to an accuracy far better than the accuracy of the GRACE gravity observations;
and the response of the solid Earth to the surface mass load. That loading signal, which
is typically only a few percent of the signal from the load itself, can be linearly related to
the load signal through scale-dependent, well-modeled, proportionality factors (load Love
numbers; see below).

Thus, the seasonal mass anomaly can be assumed to be concentrated within a few km of
the surface. The inversion for mass anomalies still depends, in principle, on the exact depth
of the load. But since the few-km uncertainty in vertical position is much smaller than the
horizontal scales of the signals shown in Figure 2a, the corresponding uncertainty in the
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amplitude of the inferred mass anomaly is negligible. It is still not possible to tell, without
additional information, whether a mass anomaly in a continental region, for example, is in
the atmosphere, or in the water and snow on the surface, or in the water stored underground.
But at least the total amplitude of the mass anomaly can be determined.

The difficulty with time-variable gravity is that the amplitudes are small. A comparison
of Figures 1 and 2a, for example, shows that the annually varying geoid is over 1000 times
smaller than the lateral variation in the static field. Most of the Earth’s mass, after all, is
tied up in it’s rocky interior, and remains relatively immobile on human time scales.

Advances in ground-based instrumentation over the last few decades have made it possible
to begin to observe time-variable gravity at local scales. Modern, high-precision gravimeters
can detect surface displacements caused by solid Earth processes, as well as local gravitational
changes caused by variations in the overlying atmosphere and underlying water storage.

But the recovery of large-scale time-varying signals requires satellite measurements. Until
the launch of CHAMP (Challenging Microsatellite Payload) in 2001 and, especially, GRACE
(Gravity Recovery And Climate Experiment) in 2002, satellite time-variable gravity solu-
tions were based entirely on Satellite Laser Ranging (SLR) observations. The most useful
SLR measurements have involved LAGEOS (launched by NASA in 1976) and LAGEOS II
(launched jointly by NASA and the Italian Space Agency in 1993). Both satellites are orbit-
ing at 6000 km altitude. They are passives spheres, with outer surfaces covered with corner
cube reflectors. A powerful laser on Earth sends a laser pulse up to the satellite, where
the light is reflected back to the laser. The round-trip travel time is measured, and so the
distance between the laser and the satellite is determined. By monitoring these distances
from lasers around the Earth’s surface, the satellite’s orbital motion is computed. Since the
orbital motion is determined by the Earth’s gravity field, this allows for global gravity field
solutions at regular time intervals. Differences between solutions for different time periods
provide estimates of time-variable gravity.

1.3 Changes in the Earth’s Oblateness

The first satellite identification of a non-tidal time-varying signal was the recovery of a
secular change in the Earth’s oblateness. The oblateness is a global-scale component, and
is the easiest laterally varying component to detect with a satellite. There are two reasons
for this. Let N(θ, φ) be the height of the geoid above the Earth’s mean spherical surface at
latitude θ and eastward longitude φ. It is usual to expand N as a sum of Legendre functions
(see, e.g., Chao and Gross, 1987):

N(θ, φ) = a
∞∑
l=2

l∑
m=0

P̃lm(cos θ)(Clm cos (mφ) + Slm sin (mφ)) (1)

where a is the radius of the Earth, the P̃lm are normalized associated Legendre functions,
and the Clm and Slm are dimensionless (Stokes) coefficients. Global gravity field solutions
are typically provided in the form of a set of Stokes coefficients. The indices l and m in
(1) are the degree and order, respectively, of the Legendre function. The horizontal scale of
any term in (1) is inversely proportional to the value of l. The half-wavelength of a (l, m)
harmonic serves as an approximate representation of this scale, and is roughly (20,000/l)
km. Note that the sum over l in (1) begins at l = 2. The l = 0 term vanishes because
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N is defined as the departure from the mean spherical surface; and the l = 1 terms vanish
by requiring the geoid to be centered about the Earth’s center of mass. Thus the l = 2
terms are the longest wavelength terms in the series expansion (1). The Earth’s oblateness
is proportional to C20.

Satellite determinations of gravity are sensitive to the gravity field at the altitude of the
satellite, not at the Earth’s surface. And the gravitational potential from any (l, m) term in
(1) decreases with increasing radius, r, as (a/r)(l+1). Thus, terms with the smallest values
of l (i.e. the longest wavelengths) are the least attenuated up at the satellite altitude, and
so tend to be the easiest to determine. This tends to favor the recovery of l = 2 Stokes
coefficients, relative to coefficients with l > 2.

At the same time, terms with m = 0 are better determined than terms with m > 0. This
is because an m = 0 term does not depend on longitude. For example, Figure 3 shows the
patterns of (l, m) = (2, 0) and = (2, 2) terms. Suppose you track a satellite orbiting in the
(2, 0) pattern shown in panel (a). As the satellite makes its first orbit, traveling from near the
north pole down to near the south pole and back again, it passes through the gravity pattern
of red/green/blue shown in the figure, and its orbit gets perturbed accordingly. By the time
it begins its second orbit, the Earth has rotated about the polar axis, but because there is
no longitude dependence the satellite passes through the same red/green/blue pattern on
its second orbit, and so that orbit gets perturbed in the same direction. This happens for
every orbit, so the perturbation gradually builds up to large values and is easily seen in the
ranging observations. On the other hand, for the (2, 2) pattern in panel (b), every time the
satellite begins a new orbit the underlying pattern is different because the Earth’s rotation
has carried that pattern to the east. Thus, the orbital perturbations do not tend to add
constructively and are harder to see.

Early SLR solutions showed a secular increase in C20 (Yoder et al., 1983; Rubincam,
1984) which is consistent with a steady migration of mass from low latitudes towards high
latitudes. The signal was first interpreted as due to post-glacial rebound (PGR), the Earth’s
ongoing response to the removal of the ice loads at the end of the last ice age. The areas that
lay beneath the ice loads centered over Hudson Bay and over the region around the North
and Baltic Seas, are still depressed from the weight of those ancient ice sheets, and they
are still gradually uplifting as material deep within the mantle flows in from lower latitudes.
In fact, since its first detection, the observed secular change in C20 has been used in PGR
models to help constrain the Earth’s viscosity profile.

More recent SLR solutions give C20 trends that are in general agreement with those early
estimates (e.g. Cox and Chao et al., 2002; Cheng and Tapley, 2004), though the actual
rate tends to be sensitive to the time span of the data and the analysis method used (eg.
Benjamin, et al., 2006). A representative C20 time series is shown in Figure 4 (data provided
by Chris Cox, 2005). There is large seasonal variability, due presumably to a combination
of atmospheric pressure variations and variations in the distribution of water in the oceans
and on land (eg. Chao and Au, 1991; Dong, et al., 1996; Cheng and Tapley, 1999; Nerem,
et al., 2000; ). A trend is also clearly evident in the results, and is more pronounced after
the data have been low-pass filtered (the red line in Figure 4). But there is also evidence
of interannual variability. In particular, notice the anomalous wiggle during 1998-2002 (Cox
and Chao, 2002). This feature has been variously explained as the result of climatically
driven oscillations in the ocean (Cox and Chao, 2002; Dickey et al., 2002), in the storage
of water, snow, and ice on land (Dickey et al., 2002), and as partly the consequence of the
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effects of anelasticity on the 18.6-year solid Earth tide (Benjamin, et al., 2006). Whatever its
origin, its presence illustrates why solutions for the secular trend depend on the time span.

In addition, it has become increasingly evident in recent years that there could be other
processes that involve enough mass transfer between low- and high-latitudes to have a sig-
nificant impact on the C20 trend, and so to confuse the PGR interpretation. The most
important of these processes are likely to be changes in ice of the Greenland and Antarctic
ice sheets. For example, a rate of Antarctic ice mass loss equivalent to 0.6 mm/yr of global
sea level rise averaged over the last 30 years, would cause a C20 rate of increase that is about
equal in magnitude to the SLR value, though with the opposite sign (eg. Trupin, 1993). If
the ice mass trend was even a sizable fraction of this amount, it would have a significant
impact on the C20 PGR constraint.

These uncertainties arise because knowledge of the single harmonic, C20, is not sufficient
to determine the spatial location of the signal. SLR has provided time-variable solutions for a
handful of other harmonics ( Cheng, et al., 1997; Cheng and Tapley, 1999; Nerem, et al., 2000;
Moore, et al., 2005 ). But there are not nearly enough of these harmonics to give the spatial
resolution necessary to confidently address these issues. The basic limitation comes from the
high altitude of LAGEOS (6,000 km) and the other SLR satellites. Shorter-scale harmonics
in (1) are sufficiently attenuated at those high altitudes that their time-dependence cannot
be easily detected. The solution to this problem is to use a satellite in a lower-altitude
orbit. That is the motivation for CHAMP (Reigber et al., 2002) and, especially, for GRACE
(Tapley et al., 2004a,b).

2 GRACE

The GRACE mission design makes it particularly useful for time-variable gravity studies.
Launched jointly by NASA and the German Space Agency (DLR) in March, 2002, GRACE
consists of two identical satellites in identical orbits, one following the other by about 220
km. The satellites use microwaves to continually monitor their separation distance to an
accuracy of better than 1 micron - about 1/100’th the thickness of a human hair. This
distance changes with time as the satellites fly through spatial gradients in the gravity field,
and so by monitoring those changes the gravity field can be determined. The satellite altitude
is less than 500 km, which makes GRACE considerably more sensitive than SLR to short
wavelength terms in the gravity field. The disadvantage of having such a low altitude is that
GRACE experiences greater atmospheric drag, which can cause large and unpredictable
changes in the inter-satellite distance. To reduce this problem, each GRACE satellite has an
on-board accelerometer to measure non-gravitational accelerations. Those measurements are
transmitted to the ground where they are used to correct the satellite-to-satellite distance
measurements. Each spacecraft also has an on-board GPS receiver, used to determine the
orbital motion of each spacecraft in the global GPS reference frame and to improve the
gravity field solutions at global-scale wavelengths.

2.1 Gravity Solutions

GRACE transmits raw science instrument and satellite housekeeping data to the ground,
where they are transformed into physically meaningful quantities: e.g. satellite-to-satellite
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distances, non-gravitational accelerations, spacecraft attitudes, etc.. These quantities, called
Level-1 data, are made publically available and can be used to construct gravity field solu-
tions. Since few users have the capability of constructing their own gravity solutions from
these data, the GRACE Project does that as well, and makes those solutions, referred to as
Level-2 data, available on the web.

The Level-2 gravity products consist of complete sets of harmonic (Stokes) coefficients
(1) out to some maximum degree and order (typically lmax = 120), averaged over monthly
intervals. Larger sets of coefficients averaged over longer time intervals are also provided
to represent the static field. Harmonic coefficients can be used to generate geoid, gravity,
or mass solutions at individual locations, or averaged over specific regions, as described
below. Level-2 products are generated at several Project-related processing centers (i.e. the
Center for Space Research at the University of Texas, GeoForschungsZentrum in Potsdam,
Germany, and the Jet Propulsion Laboratory), and each of these products is made available
to users.

Harmonic solutions are traditional in satellite geodesy. Harmonics help with the problem
of upward and downward continuing the gravity field between the surface and the satellite
altitude, during the solution process. Specifically, the gravitational potential caused by any
(l, m) term in (1) has a particularly simple radial dependence, decreasing with increasing
radius, r, as (a/r)(l+1).

Nevertheless, users sometimes generate non-harmonic solutions directly from the Level-1
data. Various methods have been derived for doing this, most of which involve partition-
ing the time-variable surface mass field into small regions, and using the Level-1 data to
directly determine the mass in each of those regions. For example, the first and second time-
derivatives of the satellite-to-satellite distance are the along-track differences in velocity and
acceleration of the two satellites. These can be used to determine the along-track gradients
of the gravitational potential and acceleration, respectively. These gradients can then be fit
to upward-continued mass signals from specific regions, to determine the amplitudes of those
mass signals (see, for example, Jekeli, 1999; Visser, et al., 2003; Han, et al., 2005a, 2006a;
Schmidt, et al., 2006a)

Another approach involves the construction of ”mascon” solutions (e.g. Rowlands, et
al., 2005; Watkins and Yuan, 2006; Yuan and Watkins, 2006). Mascons, in this context,
are mass anomalies spread uniformly over either regular- (usually rectangular) or irregular-
shaped blocks (Luthcke, et al., 2006) at the Earth’s surface. Each such mass anomaly has
an overall scale factor, which is determined from the Level-1 data.

These alternative methods are usually designed to estimate regional mass anomalies,
rather than to generate results everywhere over the globe. They thus often ingest only those
Level-1 data that are acquired when the satellites are over the region of interest. This tends
to reduce a problem common to global harmonic solutions, in which errors, either in the
satellite measurements or in the geophysical background models, that affect the satellites in
one region, end up leaking into the gravity field solutions in distant regions.

2.2 Using the harmonic solutions to solve for mass

Most users do not have the resources to process Level-1 data, and rely instead on the standard
Level-2 gravity field products: the harmonic solutions. For most applications the gravity
field itself is not of direct interest. Instead, it is usually the mass distribution causing the
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gravity field that is the desired quantity. Here, we describe how that mass distribution can
be inferred from the harmonic gravity solutions. We focus specifically on the time-variable
components of the gravity and mass fields. The methods described here are described in
more detail in Section 2.1 of Wahr et al., (1998) (see, also, Chao and Gross, 1987).

The time-variable component of the gravity field is obtained by removing the long-term
mean of the Stokes coefficients from each monthly value. The mean can be obtained from
one of the static fields available as Level-2 products. Or, perhaps more usefully, it can be
estimated by simply constructing the average of all the monthly fields used in the analy-
sis. The reason for removing the mean field is that it is dominated by the static density
distribution inside the solid Earth. It thus has no bearing on attempts to learn about, say,
the distribution of water stored on land or in the ocean. Removing the static field, though,
means that all contributions from the mean stored water are also removed. Thus, only the
time-variable component of the water storage can be recovered.

The time-variable gravity field is then used to solve for the time-variable mass field. This
solution is non-unique, as described in the Introduction. Let ∆Clm and ∆Slm, be the time-
variable components of the (l, m) Stokes coefficients for some month. Let ∆ρ(r, θ, φ) be the
density redistribution that causes this time-dependent change in gravity. Then:

{
∆Clm

∆Slm

}
=

3

4πaρave(2l + 1)

∫
∆ρ(r, θ, φ)

(
r

a

)l+2

P̃lm(cos θ)

{
cos (mφ)
sin (mφ)

}
sin θ dθ dφ dr

(2)
where ρave is the average density of the Earth ( = 5517 kg/m3).

Suppose the density is expanded as a sum of Legendre functions:

∆ρ(r, θ, φ) =
∞∑
l=0

l∑
m=0

P̃lm(cos θ)(∆ρc
lm(r) cos (mφ) + ∆ρs

lm(r) sin (mφ)) (3)

Using (3) in (2), and employing orthogonality relations for Legendre functions, (2) reduces
to {

∆Clm

∆Slm

}
=

3

aρave(2l + 1)

∫ {
∆ρc

lm(r)
∆ρs

lm(r)

} (
r

a

)l+2

dr (4)

This result, (4), can be used to place constraints on ∆ρ(r, θ, φ) from measurements of
∆Clm and ∆Slm. The non-uniqueness is evident here in the fact that ∆Clm and ∆Slm

provide information only on the radial integral of the density coefficients. There is no way
of determining how the density depends on depth within the Earth.

Suppose, though, we have reason to believe the observed ∆Clm and ∆Slm are caused by
mass variability concentrated within a thin layer of thickness H near the Earth’s surface; a
layer containing those regions of the atmosphere, oceans, ice sheets, and land water storage
that are subject to significant mass fluctuations. H , in this case, would be mostly determined
by the thickness of the atmosphere, and is of the order of 10 km. If H is thin compared to
the horizontal resolution of the observations, then the the amplitude of the density anomaly
can be uniquely determined, as follows.

Suppose the observed gravity field is accurate enough to resolve gravity anomalies down
to scales of R km. That means the ∆Clm and ∆Slm’s contain useful information for values
of l up to lmax = 20000/R. At present GRACE has a typical resolution of ∼750 km, though
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resolutions as small as ∼300 km can be obtained by employing post-processing methods
(Swenson and Wahr, 2006a). Thus, at present lmax ∼ 65. Suppose H is thin enough that

(lmax + 2)H/a << 1 . (5)

Then, (r/a)l+2 ≈ 1 for all usable values of l, and so (2) reduces to

{
∆Csurf mass

lm

∆Ssurf mass
lm

}
=

3

4πaρave(2l + 1)

∫
∆σ(θ, φ) P̃lm(cos θ)

{
cos (mφ)
sin (mφ)

}
sin θ dθ dφ (6)

where ∆σ is the change in surface density (i.e., mass/area), defined as the radial integral of
∆ρ through the surface layer:

∆σ(θ, φ) =
∫
thin layer

∆ρ(r, θ, φ)dr (7)

The assumption that the density anomaly is concentrated within this thin layer is incor-
rect. Any change in mass load at the surface will induce deformation within the solid Earth,
leading to a density anomaly at depth as well. The gravity signal caused by these solid Earth
mass anomalies is typically a few percent of the gravity anomaly caused by the surface mass,
and fortunately can be easily represented in terms of load Love numbers, kl (see, e.g., Farrell,
1972; Chao, 1994, equation (6)). Specifically, if ∆CsolidEarth

lm and ∆SsolidEarth
lm represent the

contributions to the gravity field from the load-induced deformation in the solid Earth, then{
∆Csolid Earth

lm

∆SsolidEarth
lm

}
= kl

{
∆Csurf mass

lm

∆Ssurf mass
lm

}
(8)

Thus, the total dependence of the Stokes coefficients on the surface mass density is

{
∆Clm

∆Slm

}
=

3

4πaρave

1 + kl

(2l + 1)

∫
∆σ(θ, φ) P̃lm(cos θ)

{
cos (mφ)
sin (mφ)

}
sin θ dθ dφ (9)

By expanding ∆σ(θ, φ) as a sum of Legendre coefficients, similar to the expansion shown
in (3) for ∆ρ, and using the orthogonality of the Legendre functions to obtain a result similar
to (4), we find:

∆σ(θ, φ) =
aρave

3

∞∑
l=0

l∑
m=0

2l + 1

1 + kl
P̃lm(cos θ)(∆Clm cos (mφ) + ∆Slm sin (mφ)) (10)

The results above assume the surface layer is thin enough that (5) is valid. If we assume
that lmax = 65, and that the layer includes the atmosphere so that H ∼ 10 km, then (5)
is violated at about the 10% level. This is a large enough inaccuracy that it might be
important, for some applications, to include the radial distribution of atmospheric density
fluctuations. Methods of doing this are described in Swenson and Wahr (2002a). Mass
variations in the oceans and in the water stored on land occur almost entirely within 1 km
of the surface, and usually much closer to the surface than that. For a 1 km thick layer
and lmax = 65, (5) is accurate to ∼1%, which is easily good enough for oceanographic and
hydrological applications.
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2.3 Love numbers

The use of (10) to recover surface mass requires knowledge of the load Love numbers kl.
As a guide, one set of results for those Love numbers is given in Table 1 (D. Han, personal
communication, 1998) for a few values of l up to 200. These results are computed as described
by Han and Wahr (1995), using Earth structural parameters from the Preliminary Reference
Earth Model (PREM) of Dziewonski and Anderson (1981). Results for other values of
l < 200 can be obtained by linear interpolation of the Table 1 results. Linearly interpolating
the Table 1 results, instead of using exact results, introduces errors of less than 0.05% for
all l < 200.

These results for kl do not include anelastic effects. Those effects increase with increasing
period but are apt to be negligible for our applications. For example, Wahr and Bergen
(1986) concluded that at an annual period the anelastic effects on the l = 2 body tide Love

number, kbody
2 , would probably be less than 2%, corresponding to an effect on (1 + kbody

2 ) of
less than 1% . Even allowing for larger effects at longer periods, and perhaps a somewhat
greater effect for load Love numbers than for body tide Love numbers (since load Love
numbers are more sensitive to upper mantle structure where the anelastic effects could be
larger), we tentatively conclude that anelasticity would not perturb the results for (1 + kl)
by more than a few percent.

The Love numbers in (10) with l = 0 and l = 1 require discussion. The l = 0 term is
proportional to the total mass of the Earth where ”the Earth” includes not only the solid
Earth, but also its fluid envelope (the oceans, atmosphere, etc.). This total mass does not
change with time, and so ∆C00 from GRACE can be assumed to vanish. Suppose, though,
the objective is to use (10) to find the surface mass contribution from just one component
of the surface mass: say, the ocean, for example. The total mass of the ocean need not be
constant, due to exchange of water with the atmosphere or the land surface. So the oceanic
contributions to ∆Ĉ00 need not vanish. But this nonzero ∆Ĉ00 will not induce an l = 0
response in the solid Earth: i.e., the load does not cause a change in the total solid Earth
mass. Thus k0 = 0.

The l = 1 terms are proportional to the position of the Earth’s center of mass relative to
the center of the coordinate system and so depend on how the coordinate system is chosen.
One possibility is to choose a system where the origin always coincides with the Earth’s
instantaneous center of mass. In that case all l = 1 terms in the geoid are zero by definition,
and so the GRACE results for ∆Clm = ∆Slm = 0 for all l = 1. This is the coordinate system
used for the geoid representation shown in (1). Again, the l = 1 coefficients for an individual
component of the total surface mass need not vanish. Redistribution of mass in the ocean,
for example, can change the center of mass of the ocean. But that will induce a change in
the center of mass of the solid Earth, so that the center of mass of the ocean + solid Earth
remains fixed. So, for this choice of coordinate system, kl=1 = −1.

Another possibility is to define the coordinate system so that its origin coincides with the
center of figure of the Earth’s solid outer surface. That is the most sensible way of defining
the origin when recovering the Earth’s time-variable mass distribution, since hydrological,
oceanographic, and atmospheric models are invariably constructed in a system fixed to the
Earth’s surface. In that case the l = 1 GRACE results for ∆Clm = ∆Slm need not vanish,
and the Love number kl=1 is defined so that the l = 1 terms in (10) describe the offset
between [the center of mass of the surface mass + deformed solid Earth] and [the center of
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figure of the deformed solid Earth surface]. It is shown by Trupin et al. (1992; equation
(10)) that for this coordinate system kl=1 = −(hl=1 + 2`l=1)/3 , where hl=1 and `l=1 are the
l = 1 displacement Love numbers when the origin is the center of mass of the deformed solid
Earth. For this choice of origin, the numerical value of kl=1 = −(hl=1 + 2`l=1)/3 is given in
Table 1.

2.4 Spatial averaging

Equation (10) is the starting point for using GRACE estimates of ∆Clm and ∆Slm to recover
changes in surface mass density. Because the errors in the GRACE results become large
for large l (i.e. short scales), and because terms with large l values can make important
contributions to the sum in (10) (note the 2l + 1 factor in the numerator of (10)), the use of
(10) as written can lead to highly inaccurate results.

To obtain accurate results it is necessary to somehow reduce the large-l contributions
to the sum (10). This involves the insertion of some additional multiplicative factor into
(10), that is small for large values of l. Any such modification means that the sum will
no longer be an exact representation of the surface mass at (θ, φ). Since most applications
require the surface mass in the spatial domain, it is useful to choose a multiplicative factor
in such a way that the sum still has some meaningful connection to the spatially dependent
surface mass. Any multiplicative factor applied in the spectral (l, m) domain is equivalent to
convolving with some corresponding weighting function in the spatial domain. The problem
is to choose a factor that reduces the errors, but that keeps the weighting function localized.
The issues are similar to those encountered when designing filters for time series analysis,
where the generic problem is to construct a filter that removes noise but that still provides
a meaningful estimate of the true signal in the time domain.

Various methods have been used for improving the GRACE mass estimates in this way,
though most of them are similar to one another (Wahr, et al., 1998; Swenson and Wahr,
2002b; Swenson et al., 2003; Seo and Wilson, 2005; Chen et al., 2006a; Han et al., 2005b).
These methods fall into one of two categories: smoothing the surface mass results, or aver-
aging over specific regions.

2.4.1 Smoothing

The simplest way of modifying (10) to obtain accurate results, is to introduce degree-
dependent weighting factors Wl into the sum, so that

∆σ(θ, φ) =
aρave

3

∑
l,m

2l + 1

1 + kl
WlP̃lm(cos θ) [∆Clm cos (mφ) + ∆Slm sin (mφ)] (11)

∆σ then represents a smoothed version of the surface mass anomaly, given by

∆σ(θ, φ) =
∫

sin θ′ dθ′ dφ′∆σ(θ′, φ′) W (α) (12)

where α is the angle between (θ, φ) and (θ′, φ′), and W (α) is a smoothing function corre-
sponding to the choice of the Wl’s:

W (α) =
1

4π

∑
l

√
2l + 1WlP̃l0(α) . (13)
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One obvious way of smoothing is simply to truncate the sum over l so that the inaccurate
coefficients at large-l are not included. This is equivalent to choosing Wl = 1 for values of
l less than some lmax, and Wl = 0 for l ≥ lmax. This approach can, indeed, give accurate
results for the sum if lmax is chosen to be small enough. The disadvantage of using this
step-function weighting, is that the equivalent convolution function, W (α), ”rings” in the
spatial domain (see panels (a) and (b) in Figure 5)). The results for ∆σ in this case are an
average not only of the true values of ∆σ at points close to (θ, φ), but also of ∆σ values at
points all around the globe, and where the smoothing function has an oscillating sign.

This ringing can be avoided by choosing Wl to decrease smoothly with l. A convenient
choice of smoothing coefficients (see, e.g., Wahr et al., 1998) are the Gaussian values devel-
oped by Jekeli (1981) to improve estimates of the Earth’s gravity field. Those coefficients
can be found using the recursion relations

W0 = 1

W1 =
1 + e−2b

1− e−2b
− 1

b
(14)

Wl+1 = −2l + 1

b
Wl + Wl−1

These coefficients correspond to to a smoothing function

W (α) =
b exp [−b(1− cos α)]

1− e−2b
(15)

where

b =
ln(2)

(1− cos (r/a))
(16)

and r is the distance on the Earth’s surface at which W has decreased to 1/2 its value at
α = 0 (the distance on the Earth’s surface = aα). We will refer to r as the smoothing radius.
As an example, panels (c) and (d) Figure 5 show W (α) and Wl for r = 400 km. Note that
the convolution function, W (α), decreases smoothly to zero at large angular distances, and
does not oscillate. In practice, there will always be some oscillation, since no satellite gravity
field model will ever provide Stokes coefficients out to infinite degree. But as long as the
Wl are small out at the value of the maximum degree in the gravity model, the ringing is
minimal.

The annual amplitudes shown in Figure 2b are obtained by applying a Gaussian smooth-
ing function with a 750-km radius, to monthly GRACE mass solutions between the spring
of 2002 and the spring of 2006. For comparison, the top panel of Figure 6 shows results for a
single month (after the temporal mean has been subtracted) for a 400 km radius. Note the
notably increased noise for the shorter averaging radius. This occurs because the high-degree
terms in (10) are not attenuated as effectively for shorter smoothing radii. The disadvantage
of using longer smoothing radii is that the results in the spatial domain are less able to pick
up short-scale structure in the mass anomalies.

The results shown in the top panel of Figure 6 suggest that 400-km resolution is beyond
the current capabilities of GRACE. Note that the noise seems to be oriented in north-south
stripes. This is a familiar characteristic of GRACE gravity solutions; and is not found,

13



for example, in SLR gravity fields. It occurs because the GRACE satellites measure gravity
gradients along-track, and since the GRACE inclination is 89o, the tracks are oriented north-
south. Thus there is little east-west sensitivity and so any errors in the measurements or in
the processing, tend to be put into east-west gradients. Post-processing methods can be used
to remove those stripes. The bottom panel of Figure 6 shows results for the same 400-km
smoothing radius as the top panel, but after applying the post-processing method described
in Swenson and Wahr (2006a). Simulations show that this method reduces stripes with only
minimal impact on real signal. Note that the stripes in the bottom panel are, indeed, greatly
reduced, and that features that look like true signal are now clearly evident.

2.4.2 Regional averaging

Many applications require estimates of mass variability for specific regions; for example,
estimating changes in mass of the Antarctic ice sheet, or changes in water storage in the
Mississippi River basin. These sorts of problems are better addressed by constructing spe-
cific averaging functions optimized for those regions, than by employing the sort of generic
smoothing functions described above.

For example, an exact regional average would take the form

∆σregion =
1

Ωregion

∫
∆σ(θ, φ)ϑ(θ, φ) sinθdθ dφ (17)

where Ωregion is the angular area of the region of interest, and where

ϑ(θ, φ) =

{
0 outside the basin
1 inside the basin

. (18)

The result (17) can be expressed as a sum of Stokes coefficients:

∆σregion =
a ρave

3 Ωregion

∞∑
l=0

l∑
m=0

(2l + 1)

(1 + kl)
(ϑ c

lm∆Clm + ϑ s
lm∆Slm) , (19)

where ϑ c
lm and ϑ s

lm are the harmonic coefficients of ϑ(θ, φ). Since the averaging function,
ϑ(θ, φ) in this case, changes abruptly from 1 to 0 along the edge of the region, it has power
at short spatial scales. Thus ϑ c

lm and ϑ s
lm can be relatively large at high degrees, and so this

estimate of ∆σregion can be inaccurate.
The way around this problem is to smooth the averaging function, so that it is close to

1 inside the region and close to 0 outside, and varies smoothly between 0 and 1 along the
edges. We replace (17) with:

∆σregion =
1

Ωregion

∫
∆σ(θ, φ)W (θ, φ) sinθdθ dφ (20)

where the averaging function

W (θ, φ) =
1

4π

∑
lm

P̃lm(cosθ){W c
lmcos(mφ) + W s

lmsin(mφ)} , (21)
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is chosen to closely approximate ϑ(θ, φ), but to vary smoothly enough that its expansion
coefficients W c

lm and W c
lm are small for large values of l. In that case, the spectral equivalent

to (20),

∆σregion =
∑
l,m

a ρave

3Ωregion

(2l + 1)

(1 + kl)
(W c

lm∆Clm + W s
lm∆Slm) , (22)

will be both reasonably representative of the true regional average, and reasonably accu-
rate. Methods of optimizing the choice of W (θ, φ), based on estimates of the true signal
characteristics, are described by Swenson and Wahr (2002b) and Swenson et al. (2003) (see,
also, Seo and Wilson, 2005). In general, the larger the region the more accurate the results.
Examples of optimal averaging functions for Antarctica and for the Mississippi Basin are
shown in Figure 7. Note that in both cases the averaging function is smaller than 1 inside
the region, and remains larger than 0 for some distance outside the region.

2.5 Estimating errors and accounting for leakage

Errors in a surface mass estimate separate into two categories: those due to errors in the
Stokes coefficients, and those caused by leakage from other signals. Errors in the Stokes coef-
ficients can be caused by instrumental, data processing, or aliasing errors. Temporal aliasing
errors in the GRACE monthly gravity fields are caused by short-period (sub-monthly) vari-
ations in gravity. The satellite does not monitor the entire global field continually during
a month, but samples the gravity field only along its orbital path. Infrequent sampling of
a short-period signal can cause aliasing into the monthly averages. The best way to re-
duce these aliasing errors is to independently model and remove the effects of short-period
gravity variations before constructing monthly averages. For GRACE, this means modeling
and removing the effects of solid Earth and ocean tides, of atmospheric mass variability
over land (using global, gridded atmospheric fields available from the European Centre for
Medium-Range Weather Forecasts: ECMWF), and of short period variations in ocean bot-
tom pressure (using an ocean general circulation model). Errors in any of those models cause
aliasing errors in the monthly gravity field solutions (Knudsen and Andersen, 2002; Song
and Zlotnicki, 2004; Han et al., 2004, 2005c; Thompson et al., 2004; Schrama, 2004; Ray
and Luthcke, 2006).

To see how errors in the Stokes coefficients from any source (i.e. instrumental, processing,
aliasing), map into errors in a mass estimate, let δClm and δSlm be the root-mean-square
(rms) errors in the Stokes coefficients. The smoothed estimates (11) and the regional averages
(22) are both of the form

σ =
∑
l,m

[F m
l ∆Clm + Gm

l ∆Slm] . (23)

Suppose the errors in the different Stokes coefficients are uncorrelated with one another.
Then the corresponding rms error in σ would be

δσ =
√∑

l,m

(F 2
lmδC2

lm + G2
lmδS2

lm) . (24)

The errors in different Stokes coefficients are unlikely to be uncorrelated. For GRACE,
those correlations are responsible for the stripes evident in the top panel of Figure 6. Knowl-
edge of the full error covariance matrix can improve the estimate of δσ. But even without
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the full covariance, (24) provides a reasonable first approximation for δσ, if δClm and δSlm

can be estimated.
To understand leakage errors, consider an application where the goal is to use the Stokes

coefficients to assess a regional water storage model. For example, suppose a surface mass
average of the form (22) is constructed and interpreted as an estimate of water storage
variability in some chosen river basin. Leakage errors are the contributions to (22) caused
by gravity signals from outside the basin.

These leakage errors can come from time variable mass anomalies either vertically above
or below the river basin, or from mass anomalies off to the side of the basin. Signals above or
below would come from the overlying atmosphere or the underlying solid Earth, and can not
be separated from the river basin signal no matter how complete and accurate the gravity
field estimation. This is a consequence of the non-uniqueness of gravity-based inversions for
density, as described above. The only recourse is to independently model and remove the
atmospheric and solid Earth signals. Any inaccuracy in those models is thus a source of
errors for the hydrology estimates (Velicogna et al., 2001).

Leakage from mass anomalies off to the side, in neighboring river basins for example, can
be minimized using a weighting function that is as localized as possible to the river basin
of interest. As described above, though, an averaging function should usually be smoother
than the basin function to provide an accurate estimate.

For some applications, this horizontal leakage is not an issue. For example, suppose the
objective is to compare the satellite estimates of σ for the Mississippi River basin, with the
output of a hydrology model. The leakage into the satellite estimate will come mainly from
the river basins that border the Mississippi basin. If the same averaging function is applied
to the model output, then both will be subject to the same leakage. The model-satellite
comparison will then actually be a comparison over a somewhat broader region than just
the Mississippi basin, but they will both be affected by leakage in the same way.

But for many applications the goal is to estimate mass variability within a specific region
with no contamination from regions outside. In that case, leakage is an inescapable source
of error. The only way to estimate the likely impact of that error is to apply the averaging
function to simulated data. This sort of problem commonly arises in time series analysis.
Our averaging process is basically a low pass filter. A high pass filter not only removes high
frequencies, but also reduces the low frequency signal; i.e. each filter has a characteristic
gain function. The effects of the gain function must be determined and removed from the
filtered data, in order to estimate the true low frequency signal in the time domain.

The examples shown in Figure 7, i.e. the Mississippi basin and Antarctica, illustrate two
types of situations. For the Mississippi, the averaging function will downweight the true
Mississippi signal, since the averaging function is smaller than 1 over the entire basin. In
effect, the averaging function replaces some of the signal located inside the Mississippi basin,
with signals located outside in neighboring basins. The amount of leakage thus depends
on whether the external hydrology signal does or does not look like the internal signal. It
basically depends on a comparison between the correlation length of the hydrology signal
(which tends to be controlled by the scale length of the precipitation) and the resolution of
the averaging kernel (which is usually is chosen based on the resolution of the gravity field).
For a reasonably homogeneous region like this portion of the interior United States, the
signal just outside the basin is similar enough to the signal just inside, that the leakage from
the averaging kernel shown in Figure 7 is not severe. Nonetheless, the leakage is non-zero,
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and should be estimated using hydrology model output.
For Antarctica, the extension of the averaging function over the ocean means that some

Antarctic signal is being replaced by ocean signal. There is likely to be no correlation at all
between the Antarctic and ocean signals. For example, suppose the object is to determine the
linear trend in Antarctic mass over some multi-year period. It is probable that there would
be little or no multi-year trend over the ocean. So the averaging process under-represents
the contribution from the trend in Antarctic mass, and replaces it with a negligible trend
from the ocean. This can lead to serious underestimates of the Antarctic mass trend. The
situation is similar for any region where the signal of interest is much larger than the signal
in surrounding areas. Again, the only way to assess and correct for this effect is to apply the
averaging function to simulated data for the Antarctic ice sheet and the surrounding ocean.
Velicogna and Wahr (2006a), for example, found that the Antarctic averaging kernel shown
in Figure 7 underestimates the true Antarctic signal by about 35-40%. This correction,
which Velicogna and Wahr refer to as scaling, is equivalent to correcting for the gain of the
spatial filter represented by W c

lm and W s
lm in (22).

In principle, the sum in (22) should include all l in the range 0 ≤ l ≤ ∞. In practice, the
sum for GRACE is limited to 2 ≤ l ≤ lmax, where lmax can be no larger than the maximum
degree of the GRACE fields. The truncation to l ≤ lmax causes ringing: sensitivity to
mass variability well outside the region of interest; though this sensitivity is weak if lmax is
large. The restriction to l ≥ 2 arises because GRACE does not recover l = 0, 1 coefficients.
The l = 0 coefficient is proportional to the Earth’s total mass. Since that mass remains
constant, ∆C00 = 0 is a reasonable assumption. But the omission of l = 1 terms in (22)
has the potential of degrading estimates of ∆σregion. Those terms are proportional to the
displacement of the geocenter (the offset between the Earth’s center of mass and the center of
figure of the surface), and are particularly affected by the seasonal transfer of water between
the continents and the ocean. Their omission from (22) means, in effect, that the averaging
function has a small-amplitude tail that extends around the globe, causing distant signals
to leak into ∆σregion. This leakage can be estimated either by using independent estimates
of geocenter motion from other techniques (i.e. SLR, or GPS), or by using hydrological and
oceanographic models.

3 Applications

Time-variable satellite gravity measurements can be used to address a wide variety of prob-
lems, from across a broad spectrum of the Earth sciences. Any geophysical process that
causes a significant redistribution of mass over scales of hundreds of kilometers is a possible
target.

3.1 Hydrology

The largest-amplitude and most varied time-dependent signals are related to water storage
variability on land. Figure 2b, for example, shows that the annually varying signals on land
are much larger than those in the ocean. When water is placed on land a sizable fraction
often stays there for some time, either infiltrating into the soil or remaining on the surface as
water or snow. But when a parcel of water is placed on the ocean its natural tendency is to
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flow away. Note that the the largest features evident in Figure 2b are easily recognized: e.g.
heavy-rainfall regions near the equator, the strong monsoon in southeast Asia, the seasonal
snow cycle in Eurasia and northern North America. A higher-resolution (300 km Gaussian
smoothing) example is shown in Figure 8. Features clearly evident include the rain forest in
Central America, the heavy mountain snows that stretch from southern Alaska down through
the Central Rocky Mountains, the desert region of the Southwest United States, the region
of high precipitation running from the lower Mississippi Basin up through Kentucky, and
the high precipitation region along the upper Saint Lawrence River.

Time-variable gravity measurements are sensitive to the total water storage integrated
through the entire water column (see (7)). This includes water and snow on the surface, and
water in both the soil and sub-soil layers. The measurements cannot distinguish between
these stores, but can recover only the sum. This hydrological product is unique, both in its
sensitivity to sub-soil water storage and in its ability to recover results at large spatial scales.
Other types of satellite-based instruments, either already on orbit or still in the planning
stage, can detect water stored within the upper few cm of the soil, or can monitor surface
water. But time-variable gravity missions provide the only available means of monitoring
deeper water storage from space. Ground-based observations from such things as soil mois-
ture probes and the monitoring of well levels, can provide information on sub-surface storage
at individual points. But probably no region in the world has a dense enough observational
network to provide total water storage at scales of a few hundred km with the accuracy of
GRACE.

Comparing with land surface models. Water storage estimates obtained from time-
variable gravity are of potential value both as stand-alone quantities and when used in
combination with other data types. As an end product they can be compared with the
total water storage predicted by land surface models, to help assess and improve those
models ( Ramillien et al., 2005; Andersen and Hinderer, 2005; Andersen et al., 2005; Niu
and Yang, 2006; Nakaegawa, 2006; Swenson and Milly, 2006; Neumeyer et al., 2006; Seo et
al., 2006; Schmidt et al., 2006b; Hinderer et al., 2006; Frappart et al., 2006); and with soil
moisture, ground water, and/or snow mass measurements to help validate and understand
those measurements (Swenson et al., 2006; Frappart et al., 2006; Yeh et al., 2006). For
example, Figure 9 (Sean Swenson, personal communication) shows comparisons between
GRACE water storage estimates and those predicted by the GLDAS/Noah water storage
model (Rodell, et al., 2004a), for three river basins. The GRACE error bars are defined
so that if the disagreement for any month is larger than the error bars, we can be 68.3%
confident that it is the model that is in error (Wahr et al., 2006). The agreement is excellent
for the Mississippi, which is reassuring given the high density of observations used to improve
the atmospheric forcing fields in that region. For the Amazon the phase of the model tends
to slightly lead the phase of GRACE; and for the Yenisey (in northern Siberia) the phase
disagreement is more pronounced, with the model losing mass perhaps a couple months
too early in the early springs of 2003 and 2004. Comparisons like these can provide an
indication of where model improvements are necessary. Eventually, gravity-based water
storage estimates could even be assimilated directly into the hydrology models.
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Anthropogenic effects and sea level contributions. Another application of these wa-
ter storage estimates as a stand-alone product is the general issue of hydrological contribu-
tions to sea level change: what regions are important contributors, and at what time scales?
The results shown in Figure 9, for example, can be loosely interpreted as the contribution
to global sea level change from those river basins (after scaling by the ratio of the land area
to the area of the ocean, and reversing the sign). Though the connection is not that simple,
of course, since the water that leaves a river basin does not necessarily go directly into the
ocean.

The variability evident in Figure 9 is mostly seasonal. Of more relevance to the issue of
rising sea level, would be regions that display linear trends. Trends can be an indication of
anthropogenic influence. Groundwater is particularly susceptible to anthropogenic changes,
both negative and positive; e.g. aquifer pumping to obtain water for agricultural and urban
use, and groundwater infiltration from irrigation. Because few large-scale land surface models
include groundwater storage, and fewer still include anthropogenic effects, contributions such
as these can not be extracted from models. Time-variable satellite gravity measurements
offer a means of monitoring this variability (Boy and Chao, 2002; Rodell and Famiglietti,
2002).

Precipitation (P ) minus evapotranspiration (ET ). P and ET have an important
impact on climate, because their difference largely determines the exchange of mass and
latent heat between the atmosphere and underlying Earth. Estimates of P −ET can be ob-
tained from atmospheric models using moisture flux convergence parameters (e.g. Trenberth,
et al., 2006). Alternatively, for a land surface (hydrology) model P and ET are typically
computed using a water and energy balance approach (Roads et al., 2003). These models are
the best available tools for making long-range predictions of both natural and anthropogenic
climate variability. However, because of the difficulty of obtaining relevant measurements
using traditional methods, it has proven difficult to assess these model components, partic-
ularly at the synoptic scales that characterize the most energetic atmospheric disturbances.
At seasonal and longer time periods it is often assumed that storage changes are negligible,
and that therefore P − ET should balance the discharge. A model’s ability to achieve this
balance is sometimes used to assess the accuracy of its P − ET estimates (Gutowski et al.,
1997; Roads, 2002). But water storage changes certainly do exist (see Figures 2b, 8, and 9,
for example), and at seasonal periods are typically of the same order as the discharge.

Time variable gravity offers a new opportunity for determining P − ET (see Rodell et
al., 2004b; Swenson and Wahr, 2006b). The water budget equation is

dS/dt = P − ET −R, (25)

where S is total water storage and R is discharge. Time-variable gravity measurements can
be used to estimate S in a river basin. If the river that drains that basin is gauged, then
the discharge can be measured and so P − ET can be determined. As an example, the
bottom panel of Figure 10 (provided by Sean Swenson) compares P −ET estimates for the
Ob River in Siberia from GRACE and river discharge, with atmospheric model estimates
from ECMWF and NCEP. Clearly these models do a good job at reproducing P − ET in
this basin.

As a variation of this application, suppose atmospheric models are believed to accurately
predict P − ET within some river basin. Time-variable gravity estimates of S can then
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be used in (25), along with the P − ET results, to estimate the river discharge (Syed et
al., 2005). This offers a means of determining discharge for rivers that are not adequately
gauged.

3.2 Cryosphere

One of the most important likely consequences of rising global temperatures is increased
global sea levels caused by accelerated mass loss of the Antarctic and Greenland ice sheets.
There is enough frozen water in those ice sheets to raise the world’s oceans by 70 meters
if they melted completely. Even a relatively small change in ice mass could thus have a
significant impact on sea level. There have been recent, significant improvements in ice sheet
monitoring, using a variety of techniques, including radar- and laser-altimeter measurements
of changes in ice sheet elevations, radar-based measurements of the velocities and thinning
rates of outlet glaciers, and ground-based mass balance studies that compare accumulation
with discharge and melting (e.g. Church et al., 2001; Rignot and Thomas, 2002; Davis et
al., 2005; Zwally et al., 2005; Rignot and Kanagaratnam, 2006). The conclusions of different
studies are not always in good agreement. Improved monitoring of ice sheet variability would
help in understanding the present mass imbalance of the ice sheets, and could significantly
improve predictions of future change.

Time-variable gravity provides a method of monitoring changes in ice sheet mass that
is not only independent of other methods, but that is arguably the most promising method
for estimating the mass imbalance of an entire ice sheet. There have already been several
GRACE estimates for Antarctica and Greenland (Velicogna and Wahr, 2005, 2006a, 2006b;
Chen et al., 2006b, 2006c; Luthcke et al., 2006). Satellite gravity has two distinct advantages
over other techniques. First, gravity measurements provide a direct estimate of mass, which
is obviously the most relevant quantity for understanding mass imbalance. Other methods
do not determine mass loss directly, but rely on independent assumptions to relate measured
quantities to mass. Second, gravity signals at the altitude of a satellite are determined by
mass variations averaged over a broad region of the underlying surface, not just at the
point directly beneath the satellite. Thus, satellite gravity inherently averages over large
regions. Other methods tend to sample an ice sheet at relatively small, often non-overlapping
footprints, so that their estimates of total mass imbalance are subject to interpolation and
extrapolation errors.

Time-variable gravity has its weaknesses, of course, For one thing, it cannot provide
small-scale resolution, and so has trouble isolating the exact location of a mass anomaly.
For another, time-variable gravity estimates are particularly sensitive to PGR errors. Both
Antarctica and Greenland experienced significant melting at the end of the last ice age,
and the underlying Earth is still rebounding. This rebound affects altimeter estimates of
ice sheet thickness change: if the crust rises (or falls), the ice sheet’s surface will rise (fall)
along with it, and so the altimeter data will imply the ice sheet is getting thicker (thinner).
It affects satellite gravity estimates because it produces a gravity signal that is inseparable
from the gravity signal caused by the ongoing ice change. Because rock in the upper mantle
is 3-4 times as dense as ice, PGR’s relative impact on gravity is 3-4 times as large as its
impact on altimeter estimates. If the Earth’s surface uplifts by 1 cm, the altimeter sees the
ice sheet surface rise by 1 cm. But a gravity measurement sees a gravity signal that is the
equivalent of the signal from 3-4 cm of ice. Thus, although PGR models are usually used to
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remove the PGR signals from both altimeter and gravity measurements, any residual errors
in those models cause more problems for gravity than for altimetry. Ultimately, the best
approach will be to combine time-variable gravity and altimeter estimates, as well as GPS
observations of vertical crustal motion where available, to reduce the PGR errors in both
techniques (Wahr et al., 2000; Velicogna and Wahr, 2002).

3.3 Solid Earth

Although the Earth’s mean gravity field is caused almost entirely by mass within the solid
Earth, changes in the distribution of that mass generally occur too slowly, or produce gravity
signals that are too small or too localized, to be practical targets of time variable satellite
gravity studies. The most notable exception is PGR. The PGR signal over Canada is already
clearly visible in the four years of GRACE data presently available, and has proven useful
in helping to constrain the Earth’s viscosity profile (Tamisiea and Davis, 2006; Paulson,
et al., 2007). Figure 11a, for example, shows the best-fitting linear trend in surface mass,
smoothed with a 400 km Gaussian. Figure 11b shows the expected PGR signal over that
same region, computed using the ICE-5G ice deglaciation model and VM2 viscosity profile
(Peltier, 2004). There is clearly excellent agreement with the GRACE observations over
Hudson Bay, as evidenced in Figure 11c which shows that after removing the ICE-5G results
from GRACE the GRACE Hudson Bay anomaly almost completely disappears. The remain-
ing negative anomaly over southern Alaska has been interpreted as the effects of shrinking
glaciers (Tamisiea et al., 2005; Chen et al., 2006d).

PGR signals in Scandinavia, Antarctica, and Greenland are, as expected, proving harder
to recover using GRACE, due to the problems of separating those signals from other sources
of gravity trends: present-day ice mass variability within Antarctica and Greenland, and
long-period hydrological and oceanographic signals in Scandinavia and northern Europe. A
longer data span will improve the recovery in both Scandinavia and Canada, by averaging
out more of the competing hydrological and oceanographic signals in those regions. For
Antarctica and Greenland, the PGR signals can be recovered by combining time-variable
gravity with ice sheet altimetry and GPS observations, as mentioned above (Wahr et al.,
2000; Velicogna and Wahr, 2002).

Other solid Earth applications are possible, though most likely in the form of isolated
events. A good example is the 2004 Sumatran Earthquake, an event that was (of course)
unexpected, but with an associated signal that is clearly evident in GRACE data (see, e.g.,
Han et al., 2006b). This was an unusually energetic earthquake. Nevertheless, its presence
in the GRACE data raises the possibility of using time-variable satellite gravity to look not
only at co-seismic events, but also to search for post-seismic signals. The recovery of such
signals would depend not only on the accuracy of the measurements, but also on how well
the contamination from hydrological and oceanographic gravity signals can be reduced.

There is, in addition, an indirect way in which time-variable satellite gravity measure-
ments can contribute to solid Earth studies. Global Positioning System (GPS) observations
are widely used to monitor tectonic displacements of the Earth’s surface. But the Earth’s
surface can deform in response to surface loading, as well. Load deformation is a source of
noise for tectonic applications. It can be especially troublesome for campaign-style GPS ob-
serving programs, in which a site might be occupied for a few days, and then not re-occupied
for perhaps several years. In that situation, seasonal and other short-period loading can alias
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into apparent long-term variability.
Time-variable satellite gravity observations can be used to model and remove the large-

scale component of the load deformation, and so to reduce this source of noise. The surface
mass variability recovered from those observations can be convolved with solid Earth Green’s
functions to estimate the loading. Preliminary studies using GRACE data are described by
Davis et al. (2004), van Dam et al. (2006), and King et al. (2006).

3.4 Oceanography

The time-variable mass signal in the ocean is small compared to that from land, as can be
seen for the annual cycle from Figure 2b. Bottom pressure variability is not dominated by an
annual signal to the same extent as land water storage. But even when all temporal variations
are included, ocean mass fluctuations are still relatively small. Figure 12, for example, shows
that the rms surface mass variability over the oceans, smoothed with a 750-km Gaussian,
is typically only 2-3 cm or less. Presumably the large red regions along coastlines mostly
reflect the effects of the much larger land water signals leaking into the ocean estimates.
This illustrates the danger of using time-variable gravity to study the ocean near the coast.
This leakage can be reduced by decreasing the smoothing radius. But a smaller radius leads
to more inaccurate estimates, which makes it harder to recover the relatively small ocean
signal.

Still, ocean mass signals are clearly evident in GRACE data. For example, one of the di-
rect oceanographic applications of these mass estimates is to combine them with sea surface
height measurements from altimetry, to separately estimate steric and non-steric contribu-
tions to sea surface variability. A satellite radar altimeter monitors sea surface heights along
its ground-track. Suppose the altimeter detects a sea surface rise in some region. The altime-
ter data can not determine whether the rise was due to increased water mass in the region,
or whether it was due to the water becaming warmer (and/or less salty) and expanding.
Change in volume (i.e. ”steric” changes) do not cause a change in gravity. Thus, satellite
gravity measurements detect only the non-steric contributions. The steric contributions are
then the difference between the altimeter and time-variable gravity results.

Figure 13 (results provided by Don Chambers, personal communication) shows how well
this technique works on a global and seasonal scale (see, also, Chambers et al., 2004; Cham-
bers 2006a,b; Garcia et al, 2006). The red curve is the total ocean mass deduced from
GRACE. The blue curve shows an altimetric estimate of sea surface height, corrected for
steric effects using temperature and salinity profiles collected from in situ data. The altimet-
ric and steric signals are the long-term seasonal averages of data extending well back before
the launch of GRACE. Thus, the blue curve does not show actual results for 2002.5-2004.5,
but shows only the best-fitting seasonal cycle, as fit to a decade or more of prior data. Even
so, the agreement is excellent.

If the time-variable steric signal can be estimated for some region by differencing altimeter
and mass results, it is possible to recover changes in the heat content of that region, as

∆H =
ρcp

α

(
∆η − 1

ρ0

∆σ
)
, (26)

where ∆H is the change in ocean heat storage, ρ is the ocean density, cp and α are the heat
capacity and thermal expansion coefficient of sea water, ∆σ is the change in mass estimated
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from time-variable gravity, and ∆η is the change in sea surface height measured by the
altimeter (Jayne et al., 2003). This result, which extends the methodology of Chambers et
al. (1997) to include mass variability, assumes that α is independent of depth, and that
the effects of salinity variations are either negligible or can be independently modeled and
removed.

The exchange of heat between the ocean and atmosphere is one of the most significant
examples of energy transfer within the Earth’s climate system. Because of the large heat
capacity of water, the ocean can store enormous amounts of energy. Therefore, it can act
not only as a moderator of climate extremes, but also as an energy source for severe storms.
Knowledge of the ocean’s time-varying heat storage is of considerable importance for such
things as climate change prediction, long-range weather forecasting, and hurricane strength
prediction. Despite its great importance in climate, the ocean’s time-varying heat content
is greatly under-sampled because of the sparse coverage of in-situ observations. Therefore,
accurate satellite mapping of the ocean’s time-varying heat storage would be attractive for
its global and repeating coverage.

Time-variable mass estimates can be used for other types of oceanographic applications,
as well. Surface mass anomalies, ∆σ, are proportional to variations in ocean bottom pressure

∆Pbott(θ, φ) = g∆σ(θ, φ) (27)

where ∆σ (7) is integrated from the bottom of the ocean to the top of the atmosphere. Thus,
time-variable gravity over the ocean provides estimates of sea floor pressure variability at
the spatial and temporal resolution of the gravity measurements. GRACE, for example,
can provide monthly sea floor pressure maps at scales of several hundred km and greater.
These can be used to assess and improve oceanographic models (Condi and Wunsch, 2004;
Bingham and Hughes, 2006; Zlotnicki et al., 2006), and to compare with measurements from
bottom pressure recorders (Kanzow et al., 2005; Morison et al., 2007) to separate the effects
of regional and local signals.

The bottom pressure estimates can also be combined with the geostrophic assumption
(which assumes a balance between pressure and Coriolis forces) to determine changes in deep
ocean velocities at the temporal and spatial resolutions of the gravity field observation. For
GRACE, this means the results are averaged over scales of several hundred km or more.
This large a spatial scale can make it difficult to apply the geostrophic assumption at the
sea floor in the presence of short-scale topography. However, simulations (Wahr et al., 2002)
have shown that pressure variability at the sea floor is about the same as at 2 km depth, or
at even shallower depths in many cases. Thus the inferred currents can be interpreted to a
high degree of accuracy in terms of the variability of currents at 2 km depth.

4 Summary

Although Satellite Laser Ranging has been providing time-variable gravity measurements
for several decades, it is the much higher spatial resolution now available from GRACE
that permits the kinds of applications described in this paper. The figures shown here
are computed using the GRACE gravity fields available at the time of this writing (Fall,
2006). The fields will continue to improve as processing methods mature and background
geophysical models get better. Any such future improvements will be retroactively applied
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to all the fields, through reprocessing of the entire data set. In addition, as the GRACE time
series lengthens it will become easier to separate different geophysical signals. Only with a
long time series, for example, will it be possible to clearly distinguish between multi-year
variability and true secular signals.

GRACE, of course, has a finite lifetime; it was designed for a 5 year mission but may last
on the order of a decade. Plans for a next-generation mission are presently being formulated
and assessed (Watkins et al., 1998; 2000). The use of laser tracking for better monitoring
the inter-satellite distance, and the introduction of a drag-free propulsion system to reduce
atmospheric drag at lower altitudes, could lead to order-of-magnitude improvements in mea-
surement accuracy. This would increase the spatial resolution even further, down to perhaps
∼100 km, and would enable a whole new class of applications.
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Figure 1: The time-averaged geoid anomaly from EGM96 (Lemoine et et al., 1998).
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Figure 2: The top panel shows the amplitude of the annual cycle in the geoid , fit to 4 years
(spring 2002 to spring 2006) of monthly gravity field solutions from GRACE. A 750-km
Gaussian smoothing function has been applied to the results. The bottom panel shows the
corresponding amplitude of the annual cycle in surface mass, also smoothed with a 750 km
Gaussian, in units of cm of water thickness. The solid lines represent contour intervals of 1
mm in the top panel and 4 cm in the bottom panel.
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Figure 3: The spatial patterns of the Legendre functions P̃20 and P̃22.
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Figure 4: The blue line shows a time series of C20, determined from more than 20 years
of SLR measurements (data provided by Chris Cox). The red line is a smoothed version
of those values, obtained by first fitting and removing seasonal terms and then applying a
23-month moving average to the residuals.
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Figure 5: (a) the spectral smoothing coefficients equivalent to truncation at degree l =
40, and (b) the corresponding smoothing function in the spatial domain. (c) the spectral
smoothing coefficients for Gaussian smoothing with a 400 km radius, and (d) the corre-
sponding smoothing function in the spatial domain.
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Figure 6: The top panel shows surface mass anomalies deduced from GRACE for a single
month, after the temporal mean has been removed. The units are mm of water thickness.
The bottom panel shows the same thing, but after post-processing the Stokes coefficients to
reduce noise as described by Swenson and Wahr (2006a). (Figure provided by Sean Swenson.)
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Figure 7: Averaging functions, W (see equation (21)), for the Mississippi River basin and
for Antarctica. The solid lines represent contour intervals of 0.2.
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Figure 8: The amplitude of the annually varying mass signal, in units of cm of water
thickness, recovered from GRACE during spring 2002 through spring 2006. The results
have been post-processed to reduce noise (Swenson and Wahr, 2006a), and smoothed with
a 300 km Gaussian. The solid lines represent contour intervals of 1 cm.
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Figure 9: Water storage results for three river basins, obtained using specially constructed
averaging kernels for those basins. GRACE results, with their 68.3% confidence limits, are
shown in red (post-processed to reduce noise, as described by Swenson and Wahr (2006a)).
Results from the GLDAS/Noah land surface model (Rodell, et al., 2004) are in blue. (Figure
provided by Sean Swenson.)
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Figure 10: Top: Red dots are GRACE water storage estimates (S) for the Ob River; the
black line is a smoothed version. Middle: the time derivative (dS/dt) of the smoothed water
storage. Bottom: Red line is the sum of dS/dt and the measured Ob discharge (R), and so
is an estimate of P − ET . Green and orange dots are estimates of P − ET , using moisture
convergence parameters from the ECMWF (green) and NCEP (orange) models. Solid black
and hatched black lines are smoothed version of ECMWF and NCEP, respectively. (Figure
provided by Sean Swenson.)
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Figure 11: (a) the best-fitting linear trend for the GRACE fields between spring 2002 and
spring 2004, after post-processing the fields as described by Swenson and Wahr (2006a).
Results have been smoothed with a 400-km Gaussian smoothing function. Units are in
cm/yr of water thickness. (b) predictions based on the ICE-5G PGR ice deglaciation model
(Peltier, 2004). (c) the difference between (a) and (b).
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Figure 12: The rms about the mean of ocean surface mass variability deduced from GRACE
for spring 2002 through spring 2006, smoothed with a 750-km Gaussian.
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Figure 13: Compares seasonal estimates of total ocean mass from GRACE, with estimates
deduced from a combination of satellite altimetry and in situ temperature and salinity
measurements. (Results provided by Don Chambers).
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Table 1. Elastic Love Numbers kl Computed by Dazhong
Han as described by Han and Wahr (1995), for Earth
Model PREM (Dziewonski and Anderson, 1981).

l kl

0 +0.000
1 +0.027
2 -0.303
3 -0.194
4 -0.132
5 -0.104
6 -0.089
7 -0.081
8 -0.076
9 -0.072
10 -0.069
12 -0.064
15 -0.058
20 -0.051
30 -0.040
40 -0.033
50 -0.027
70 -0.020
100 -0.014
150 -0.010
200 -0.007

The l = 1 value assumes the origin of the coordinate
system is the center of figure of the solid Earth’s surface
(see text).
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