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Metabolism mediates the flow of matter and energy through the
biosphere. We examined how metabolic evolution shapes ecosys-
tems by reconstructing it in the globally abundant oceanic phy-
toplankter Prochlorococcus. To understand what drove observed
evolutionary patterns, we interpreted them in the context of
its population dynamics, growth rate, and light adaptation, and
the size and macromolecular and elemental composition of cells.
This multilevel view suggests that, over the course of evolu-
tion, there was a steady increase in Prochlorococcus’ metabolic
rate and excretion of organic carbon. We derived a mathemati-
cal framework that suggests these adaptations lower the mini-
mal subsistence nutrient concentration of cells, which results in
a drawdown of nutrients in oceanic surface waters. This, in turn,
increases total ecosystem biomass and promotes the coevolution
of all cells in the ecosystem. Additional reconstructions suggest
that Prochlorococcus and the dominant cooccurring heterotrophic
bacterium SAR11 form a coevolved mutualism that maximizes
their collective metabolic rate by recycling organic carbon through
complementary excretion and uptake pathways. Moreover, the
metabolic codependencies of Prochlorococcus and SAR11 are
highly similar to those of chloroplasts and mitochondria within
plant cells. These observations lead us to propose a general the-
ory relating metabolic evolution to the self-amplification and self-
organization of the biosphere. We discuss the implications of this
framework for the evolution of Earth’s biogeochemical cycles and
the rise of atmospheric oxygen.

metabolic evolution | Prochlorococcus | microbial oceanography |
mutualism | Earth history

Metabolism sustains the nonequilibrium chemical order of
the biosphere by continually supplying the energy and

building blocks of all cells on Earth (1–5). Here we ask: How
does cellular metabolic evolution shape the mass and energy
flows of ecosystems? The oceanic phytoplankter Prochlorococ-
cus (6), the most abundant photosynthetic cell on Earth (7, 8),
provides an ideal model system for addressing this question.
Prochlorococcus and its deeper-branching sister lineage marine
Synechococcus make up the marine picocyanobacteria and have a
characteristic biogeography (9). Prochlorococcus “ecotypes”
have geographically (10, 11) and seasonally (12) dynamic pop-
ulations that in warm, stable stratified water columns always
return to the same general structure: Recently diverging high-
light-adapted (HL) ecotypes are most abundant toward the sur-
face, whereas deeper branching low-light-adapted (LL) ecotypes
are most abundant at depth (10–14) (Fig. 1).

What selective forces drove this niche partitioning in
Prochlorococcus, and what were the consequences for the ocean
ecosystem in general? To address these questions, we recon-
structed (15, 16) (Fig. 2) the evolution of core metabolism in
strains representing the major clades of Prochlorococcus. To
interpret the observed patterns, we developed an evolutionary
framework that illuminates the driving forces that produced
many of the features of Prochlorococcus. Using this frame-
work, we argue that the evolutionary patterns manifested in the
Prochlorococcus collective reflect fundamental processes shaping
the coevolution of the chemistry of the oligotrophic oceans and
the microbial ecosystems they harbor.

Results and Discussion
Metabolism Provides Clues About Large-Scale Evolutionary Driving
Forces. To examine the driving forces shaping the evolution of
Prochlorococcus, we reconstructed (Fig. 2) the evolution of its
metabolic core (SI Appendix, Fig. S1). Because all biosynthetic
pathways originate there, its evolution is highly constrained, and
any innovations likely reflect major driving forces (5). Previ-
ous studies identified some unique presence/absence patterns for
core metabolic genes in both Prochlorococcus and Synechococ-
cus and relative to other cyanobacteria. For example, both have
replaced the cyanobacterial RuBisCO and related proteins of
the CO2-concentrating mechanism with proteobacterial variants
(17–19), lost key genes in the cyanobacterial TCA cycle (20) and
glycolysis (21), and acquired a menaquinone-based malate dehy-
drogenase (22). Photorespiration proteins are, in turn, univer-
sally preserved in Synechococcus, but unevenly distributed across
Prochlorococcus ecotypes (9, 23).

Expanding on these studies, we surveyed cyanobacteria for the
presence/absence of core metabolic genes (SI Appendix, Table S1
and Fig. S1) and mapped this distribution onto their phylogeny to
reconstruct a phylometabolic tree (Fig. 2) that resolves the evo-
lution of Synechococcus and Prochlorococcus (Fig. 1). All of the
variations are part of a sequence of innovations that remodeled
the metabolic core as Prochlorococcus diverged from the rest
of cyanobacteria (Fig. 3). Key innovations occur in ances-
tral freshwater lineages (Fig. 3 and SI Appendix, Table S1),
indicating that underlying selection pressures preceded the
emergence of the marine lineages.

Significance

Understanding what drives self-organization in complex sys-
tems and how it arises is a major challenge. We addressed
this challenge using dominant oceanic photosynthetic and
heterotrophic microbes as a model system. Reconstructing
the metabolic evolution of this system suggests that its self-
organization and self-amplification were coupled and driven
by an increasing cellular energy flux. Specifically, the evolu-
tion of cells steadily increased their metabolic rate and excre-
tion of organic carbon. We describe how this increases cel-
lular nutrient uptake and thereby ecosystem biomass. The
release of organic carbon, in turn, promotes positive feed-
backs among species that reinforce this evolutionary drive
at the ecosystem level. We propose the evolutionary self-
organization of oceanic microbial ecosystems contributed to
the oxygenation of Earth.
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Fig. 1. Typical relative abundance distributions of Prochlorococcus eco-
types as a function of depth and accompanying light intensity and nutrient
concentration profiles in stratified oceanic waters. Ecotype populations are
geographically and temporally dynamic, but in warm, stable water columns
return to this same depth-differentiated state (12). The deepest branching
ecotypes are most abundant at the bottom of the euphotic zone, where
nutrient concentrations are high and light energy low. The most recently
diverging ecotypes are most abundant near the surface, where the reverse
is true (10–14). HL, high-light-adapted; LL, low-light-adapted.

The remodeling of Prochlorococcus’ metabolic core includes
the disruption of photorespiration and the TCA cycle (Fig. 3
and SI Appendix, Fig. S1), raising the possibility that interme-
diates of truncated pathways are excreted from the cell. Phyto-
plankton commonly excrete organic carbon as an outlet of excess
reducing power under nutrient limitation or intense light (24).
Analogously, when facing a large energy supply from organic
carbon, some heterotrophs will effectively drain reducing power
into the environment by excreting partially oxidized organic car-
bon rather than fully oxidizing it to CO2 (25–28), whereas some
photoheterotrophs use CO2-fixation as a sink for excess reduc-
ing power (29). For photosynthetic cells in the oligotrophic sur-
face oceans, where the solar energy supply may commonly out-
pace the nutrient supply (Fig. 1), the combination of increased
CO2 fixation and increased excretion of organic carbon could
thus well be under strong selection. This is consistent with
observations that Prochlorococcus has the most efficient carbon-
concentrating mechanism (30) and highest known rate of CO2

fixation per photosynthetic pigment (31) of any phytoplankton,
even though its small size and slow growth (6, 32) suggest a rel-
atively small carbon flux requirement. Lastly, selection to rid the
system of excess reducing power is consistent with the acquisition
of the Plastoquinol Terminal Oxidase (PTOX) in the LLI and
HL clades of Prochlorococcus (Fig. 3 and SI Appendix, Table S1),
which adds an additional outlet for excess reducing power in their
photosynthetic electron transfer chain (SI Appendix, Fig. S1)
(33–36).

trait distribution
root

ancestral pathway

Biochemical differences between pathways (e.g. ATP/trace 
metal requirements or O2 sensitivities of enzymes) can suggest 
evolutionary driving forces

New pathway variants must be added
before ancestral variants can be lost to
maintain continuity of flux

= metabolite
= reaction

Fig. 2. Illustration of approach to metabolic reconstructions. Phylometabolic trees reflect the evolution of metabolic network phenotypes because they
integrate constraints from phylogenetics and metabolism (15, 16). All sequenced genomes within a given clade are searched for the presence/absence
of enzymes catalyzing the reactions of different pathways. Mapping pathway variability patterns onto phylogenies of the clade suggests the order of
metabolic innovations. In this example, three alternative pathways (pink, yellow, and blue) connect essential and universal pathways (black). Genes for
the yellow pathway are nearly universally distributed (Inset), suggesting that it is the ancestral pathway, with the pink and blue pathways deriving from
it. Maintaining continuity of flux results in trees of functional phenotypes. Biochemical differences between alternative pathways (e.g., ATP/trace metal
requirements or oxygen sensitivities of their enzymes) suggest evolutionary driving forces (15, 16).

That the evolution of Prochlorococcus permanently increased
the excretion of organic carbon in its late-branching strains is
also consistent with limited laboratory observations. At mod-
erate light levels in nutrient replete medium, strains from HL
clades that dominate surface waters (Fig. 1) excrete up to 20%
of fixed carbon, and recently diverging strains excrete the most
(37). Cells excrete significant amounts of glycolate (37), one of
the dead ends in the metabolic network (SI Appendix, Fig. S1).
P-starved cells excrete slightly less carbon (37), but this could be
due to the coincident cessation of growth. Nevertheless, a higher
fraction of the carbon excreted by P-starved cells consists of gly-
colate and other small carboxylic acids (37). Many phytoplank-
ton excrete glycolate under intense light or nutrient limitation
(24, 38), but retain the capacity to recycle it by using the three-
subunit iron–sulfur protein glycolate oxidase (GlcDEF, rxn 13
in SI Appendix, Fig. S1), shown to be the enzymatic workhorse
for this function in cyanobacteria (23). However, this gene is
absent in all but the deepest-branching LLIV clade of Prochloro-
coccus (SI Appendix, Table S1), suggesting a permanent opening
of this pathway early in its evolution (Fig. 3). Finally, the bulk
of organic carbon excreted by Synechococcus consists of polysac-
charides (39), which are commonly excreted by nutrient-limited
microbes (26, 40), suggesting that these compounds could simi-
larly act as a redox safety valve in Prochlorococcus, which dom-
inates in one of the most nutrient-poor environments on Earth
(7–9) (Fig. 1).

We further examined the possibility that the evolution of
Prochlorococcus increased its excretion of organic carbon as
an outlet of excess reducing power (Fig. 3) through additional
genomic analyses. Functionally related and coexpressed genes are
commonly located near each other, so we searched the genomic
neighborhoods of core metabolic genes for transporters across
clades (SI Appendix, Fig. S2). We identified chromosome rear-
rangements repositioning a series of transporters, including three
export and one import transporters, near key metabolic genes,
consistent with selection acting to fortify the control of transport
pathways (SI Appendix, Fig. S2). Chromosome rearrangements
are seen in freshwater picocyanobacteria (SI Appendix, Fig. S2),
again suggesting that these pathways came under selection before
the emergence of the marine lineages and the loss of photores-
piration in the LLII/III clade of Prochlorococcus (Fig. 3 and SI
Appendix, Fig. S1). This analysis suggests that, in addition to gly-
colate, pyruvate and citrate (or isocitrate) are exported, whereas
malate is imported (SI Appendix, Figs. S1 and S2).

Furthermore, because environmentally driven variations in the
expression of genes can give insight into their function [i.e.,
“reverse ecology” (41)], and the metabolism of Prochlorococ-
cus is highly choreographed to the diel light:dark cycle (42, 43),
we examined the gene expression of a HL-adapted strain grown
under a diel cycle (42). All putative export pathway genes have
mRNA expression maxima at sunrise (SI Appendix, Fig. S2),
consistent with their acting as redox safety valves, activated
when the supply of reducing power increases at dawn. Similarly,
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Fig. 3. Metabolic evolution of Prochlorococcus. The metabolic variants are
represented in simplified form along a gradient of the ratio of electron flux
to nutrient flux νe/νn. Innovations (SI Appendix, Fig. S1 and Table S1) are
highlighted with dashed orange lines. Cellular electron drains are repre-
sented as red dots and uptake pathways as blue dots. Photosystems are rep-
resented as boxed 2’s and 1’s, and their colors reflect the major absorption
wavelengths, their line thickness reflects their absorption cross-section, and
their relative size reflects the PSII:PSI ratio (SI Appendix, Fig. S1). Key inno-
vations in the HLI and HLII clades are related to protection/repair of direct
photodamage (52, 53), including UV damage, as indicated by a darkening
protective pink shade.

the expression of PTOX, the most immediate outlet for excess
reducing power in the electron transfer chain (SI Appendix, Fig.
S1), is maximal at midday (35, 42). Collective evidence thus
suggests that the evolution of Prochlorococcus steadily added
redox outlets, leading to increased excretion of organic carbon.
Lastly, expression of the putative malate uptake pathway peaks
at dusk (SI Appendix, Fig. S2), suggesting that the rest of the
ecosystem may return some organic carbon to Prochlorococcus
at night.

What drove Prochlorococcus’ increased excretion of organics
over the course of its evolution? If maintaining redox balance was
the driving force, why not enhance the ability to lower photosyn-
thetic electron flux (44, 45), which many photosynthesizers use
to prevent redox imbalance (46, 47)? Because Prochlorococcus
carries out a sizable fraction of the primary production in these
ecosystems, perhaps metabolic interdependencies with cooccur-

ring heterotrophs are in play. Invoking cross-feeding interac-
tions to explain excretion of organic carbon by Prochlorococcus is
problematic, however, because in unstructured populations typi-
cal of oceanic microbes, the apparent cost of fixing and excret-
ing carbon leads to a “public goods” dilemma: Nonproducer
cells that avoid the cost of production would outcompete pro-
ducer cells and suppress cross-feeding (48). Direct benefits for
the excretion of organic carbon by individual Prochlorococcus
cells are therefore needed to explain cross-feeding interactions.
Benefits of excreting organic carbon hypothesized for aerobic
heterotrophs (26, 49–51) provide relevant clues, but do not fully
translate to Prochlorococcus evolution (see SI Appendix, SI Text
for further discussion).

Integrating Evidence Across Levels of Organization Suggests a Unify-
ing View of Evolution in Prochlorococcus. To gain a better under-
standing of the evolution of Prochlorococcus, we mapped obser-
vations of its metabolism (Fig. 3 and SI Appendix, Fig. S1) onto
its population structure (Fig. 1), growth and light physiology, and
the macromolecular and elemental composition of cells. This
suggests two evolutionary trends. First, in stable water columns,
more recently diverged (HL) ecotypes experience a higher pho-
tosynthetic electron flux density [µmol electrons (g dry weight)−1

time−1], which can be parameterized as:

νe = IσPSII ΦPSII , [1]

where I is light intensity (µmol photons m−2 time−1), σPSII is
the mass-normalized whole-cell photosystem II absorption cross-
section [m2 of PSII (g dry weight)−1], and ΦPSII is the quantum
efficiency of PSII (electrons photon−1). An increase in the cel-
lular electron flux density along the Prochlorococcus phylogeny
is suggested most obviously by the layering of the relative abun-
dance of its ecotypes that emerges when the water column strat-
ifies after a mixing event in the open ocean (Fig. 1), with the
HL cells always dominating the surface waters (10–14). How-
ever, σPSII also increases along the phylogeny, suggesting that
more recently diverging strains also experience an increased elec-
tron flux at a given light level I . This increase in σPSII is mani-
fested in changes in the pigments (6, 9, 54, 55) and stoichiom-
etry (56, 57) of the photosystems (Fig. 3 and SI Appendix, Fig.
S1). These changes largely relinquish absorption of green and
yellow light, but maintain or increase absorption of blue light—
typifying the open ocean—in Prochlorococcus relative to Syne-
chococcus (32, 58). At the same time Prochlorococcus is signifi-
cantly smaller than Synechococcus (6), and cell mass decreases
along its phylogeny (59), thus suggesting an increase in the
mass-normalized absorption cross-section σPSII . Fewer compar-
ative studies exist for the quantum efficiency of PSII (ΦPSII )
but it appears to be roughly similar along the Prochlorococcus
phylogeny (57). The increasing excretion of organic carbon by
Prochlorococcus thus appears to reflect a more general trend that
increases the total cellular throughput of electrons (Fig. 3). Var-
ious genes related to the protection and repair of light damage
have been added in HL clades of Prochlorococcus (52, 53), sug-
gesting that later divergences were primarily related to fortify-
ing cellular machinery to allow cells to generate an increased
electron flux at the highest photon fluxes near the surface
(Fig. 3).

In addition to an increasing electron flux density (νe), integrat-
ing evidence across levels suggests the evolution of Prochlorococ-
cus also decreased its limiting nutrient flux density, νn [moles of
n (g dry weight)−1 time−1)]. For steady-state growth under con-
stant conditions, νn can be parameterized as:

νn = µQn , [2]

where µ is the specific growth rate (time−1) and Qn is the mass-
normalized cellular quota of limiting nutrients [moles of n (g dry
weight)−1]. A decreasing nutrient flux density during the evolu-
tion of Prochlorococcus is suggested by a decrease in its maximal
intrinsic growth rate µmax (time−1) relative to Synechococcus
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(6, 32) and an increased efficiency in its use of limiting nutri-
ents. The latter is inferred from many features of Prochlorococ-
cus, including less investment of N and P in the genome by reduc-
ing its size and guanine–cytosine content (60), decreased use of
amino acids with N-rich side chains (61), a switch from P- to
sulfolipid membranes (62, 63), and less Fe use in metabolism
and photosynthetic machinery (33, 34) (SI Appendix, Fig. S1).
These changes suggest a decreasing Qn for N, Fe, and P, the
three main limiting nutrients in the oligotrophic oceans (64). An
increasing νe coinciding with a decreasing νn over the course of
Prochlorococcus evolution can be expressed as a single variable:
the electron-to-nutrient flux ratio, νe/νn (Fig. 3).

Electron Flux and Nutrient Acquisition. What are the selective pres-
sures maximizing νe/νn in Prochlorococcus? Photosynthetic elec-
tron flux transfers solar energy into metabolism via cofactors
such ATP and NAD(P)H (65). An increased electron flux [µmol
electrons (g dry weight)−1 time−1] thus suggests an increased
metabolic rate [kJ of absorbed solar energy (g dry weight)−1

time−1]. This principle is exemplified by the increasing metabolic
activity and ATP/ADP ratios of plant chloroplasts and cyanobac-
teria when they shift from darkness into light (66, 67). Further-
more, the highest νe/νn phenotypes are the most recently diverg-
ing clades (Fig. 3), dominating near the surface where the solar
energy supply is greatest and nutrient levels are lowest (Fig. 1),
suggesting an advantage to higher metabolic rates at lower nutri-
ent concentrations.

How metabolic rate affects nutrient uptake can be understood
from Michaelis–Menten kinetics, which under strong nutrient
limitation ([n] � KM ,n) simplifies to (68) (SI Appendix, SI Text):

νn = [n]a0
n = Vmax [n]/KM ,n , [3]

where [n] is the nutrient concentration (moles of n L−1) and
a0
n is the specific nutrient affinity [L (g dry weight)−1 time−1].

Specific affinity indicates how strongly cells absorb limiting nutri-
ents (analogous to the pumping speed of a vacuum pump) and is
equivalent to the saturated maximal nutrient uptake rate Vmax

[moles of n (g dry weight)−1 time−1] over the Michaelis con-
stant KM ,n (moles of n L−1) (68) (SI Appendix, Fig. S3). Vmax

reflects the maximum handling rate for absorbed nutrients and
is proportional to metabolic rate (68, 69). The free energy cost
∆rG (kJ mol−1) of nutrient transport scales with natural log of
the ratio of internal to external nutrient concentrations (65) (SI
Appendix, SI Text) and can become very large in the extremely
nutrient-poor oligotrophic oceans (69). For example, the free
energy cost of phosphate uptake in the oligotrophic oceans is far
greater than the free energy gain of ATP hydrolysis unless the
ATP/(ADP × Pi) ratio is increased drastically from commonly
assumed metabolite concentrations of 1 mM for ATP, ADP, and
Pi (SI Appendix, SI Text). An analogous, but slightly different, sit-
uation occurs for ammonia (NH+

4 ) uptake, which has the poten-
tial for a major futile cycle in the oligotrophic ocean, because
its conjugate base NH3 passively diffuses out of the cell (70) (SI
Appendix, SI Text). It is therefore thought that cells poise their
internal [NH+

4 ] at the minimal viable value (71), which in turn
similarly requires a significant increase in the ATP/(ADP × Pi)
ratio to drive forward glutamine synthesis (glutamate + NH3 +
ATP
 glutamine + ADP + Pi), the central highway for nitro-
gen into metabolism (65). (See SI Appendix, SI Text for detailed
calculations and discussion.) Finally, while kinetic bottleneck
reactions can be driven forward by increasing the ATP/(ADP×
Pi) ratio, this simultaneously increases the free energy cost
of ATP synthesis, therefore requiring a greater proton motive
force, and thus ultimately a greater photosynthetic electron
flux (69).

The principles just outlined suggests that innovations increas-
ing νe may lower the minimal subsistence concentration of lim-
iting nutrients [n]∗ (the lowest value of [n] at which net positive
growth is possible). When growth and loss processes are rela-

tively rapid and tightly coupled, microbial strains with the lowest
[n]∗ dominate (72), suggesting that selection should favor such
innovations. To understand how selection to lower [n]∗ shapes
cells, we can substitute an expression for Vmax that assumes
reversible kinetics (SI Appendix, SI Text) into Eq. 3:

[n] =
KM ,n

Vmax
νn =

KM ,n

[E ]k+

νn
1 − e∆rG/RT

, [4]

where [E ] is the enzyme concentration [moles of enzyme
(g dry weight)−1]. k+ is the rate constant [moles of n (moles
of enzyme)−1 time−1], R is the gas constant (J K−1 mol−1), and
T is temperature (K). Eq. 4 suggests that there are two strate-
gies for lowering [n]∗ (SI Appendix, Fig. S3). First, cells can mod-
ify the kinetics (decreasing KM ,n and/or increasing k+, [E ]) and
thermodynamics (decreasing ∆rG) of their metabolism, the lat-
ter by increasing νe as we have just argued. Second, cells can
lower their [n]∗ by lowering their required flux of limiting nutri-
ents νn (Eq. 4), which can be achieved by lowering their minimal
Qn [i.e., streamlining (73)] or their µ (Eq. 2), both of which are
apparent in the evolution of Prochlorococcus as discussed above.
Optimizing kinetics/thermodynamics and decreasing νn can work
synergistically, and both are helped by a decrease in cell mass, as
is observed along the Prochlorococcus phylogeny (6, 59). That
is, selection to lower νn allows a decrease in total cell mass by
minimizing the mass dedicated to nonessential components (73).
If the amount of metabolic enzyme and photosynthetic machin-
ery is kept fixed, this decrease in total cell mass would increase
both [E ] (68) and σPSII (and thus νe , which makes ∆rG more
negative). For nitrogen, increasing νe in turn provides an addi-
tional avenue for lowering QN (and thus νN ), because path-
ways with a more negative ∆rG require less protein biomass
for a given flux (74). Thus, maximizing νe/νn lowers the [n]∗ of
cells by making the ∆rG more negative (driving kinetic bottle-
neck reactions forward), thereby increasing the nutrient affinity
(68, 69). As a result, the evolution of Prochlorococcus has driven
nutrients to vanishingly low levels (<0.1 nM) in the oligotrophic
oceans (64).

Benefits of Excreting Organic Carbon. If selection to lower [n]∗

drives the maximization of νe/νn , why should it lead to an
increased excretion of organic carbon? We argue this ultimately
emerges from mass and energy conservation. That is, in the pres-
ence of kinetic bottlenecks, cells can drive up their ATP/ADP
ratio by increasing their ATP supply rate, but to maintain steady
state, they must also increase ATP consumption rates (49, 69).
[The same argument applies to the NAD(P)H/NAD(P) ratio.]
This is consistent with observations that some nutrient-limited
aerobic chemoheterotrophs have increased glucose uptake rates,
increased levels of respiration, increased excretion of polysaccha-
rides (whose synthesis from glucose requires ATP consumption),
and a high flux through various ATP-consuming futile cycles
(25, 26, 49). For photosynthetic cells CO2-fixation is a major sink
for ATP and NAD(P)H, but cells are limited in the carbon flux
density, νC , they can accommodate. This limit is proportional to
growth rate (Eq. 2), and, because selection to lower [n]∗ favors
relatively slow-growing cells (Eq. 4), it is lower in the oligotrophic
oceans. Thus, we argue that excreted organic carbon represents
a kind of “carbon exhaust” that allows cells to maximize their
nutrient affinity by increasing their metabolic rate above limits
arising from carbon saturation.

This general mechanism is further illustrated by expanding
Eq. 4. We assume that the electron flux must support car-
bon fixation sufficient to build biomass at a rate dictated by
νn , that biomass has an elemental stoichiometry Qn /QC , that
the efficiency of fixation is #C/#e (carbon atoms electron−1),
and that a fraction (0<β<1) of carbon is excreted/respired.
#C/#e depends on the oxidation states of the carbon source,
biomass, and excreted carbon. For example, if the carbon source
is CO2 and biomass and excreted carbon have the oxidation state
CH2O, then #C/#e is 1/4 (i.e., CO2 + 4e− + 4H+ 
 CH2O +
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H2O). Photoprotective mechanisms like the water–water cycle
of PTOX (SI Appendix, Fig. S1) act to lower #C/#e. Together,
these assumptions lead to the expression (see also SI Appendix,
SI Text):

[n] =
KM ,n

[E ]k+

νn
1 − e∆rG/RT

=
KM ,n

[E ]k+

Qn

QC

νe(#C/#e)(1 − β)

1 − e∆rG/RT
.

[5]

Thus, while increasing metabolic rate (i.e., lowering ∆rG)
lowers [n]∗, it also acts to increase [n]∗ by increasing the carbon
flux density, unless excess carbon is excreted [β > 0 and increas-
ing faster than νe(#C/#e)] (Eq. 5). Selection to lower [n]∗ would
thus favor a decrease in νn and simultaneous increases in νe and
β (carbon excretion), exactly as we observed for the evolution of
Prochlorococcus (Fig. 3).

Metabolic Rate, Ecosystem Biomass, and Coevolutionary Dynamics.
What are the evolutionary and ecological consequences of Eq.
5? Focusing on the evolution of Prochlorococcus, it suggests
that the layered population structure observed in stable water
columns (Fig. 1) (10–14) reflects the sequential evolution of new
ecotypes near the surface, each with increasing metabolic rates,
drawing down limiting nutrients and restricting ancestral eco-
types to ever deeper waters (Fig. 4). This type of evolutionary
dynamic in which a key innovation causes a population to expand
along a shifted adaptive landscape produces adaptive radiations
(75, 76) and has been argued to be the dominant contributor to
global microbial diversity (77). This is consistent with observa-
tions that the broadly defined ecotypes of Prochlorococcus con-
sist of hundreds of stable subpopulations that diverged millions
of years ago (78). These are “niche constructing” adaptive radia-
tions, since the shift in the adaptive landscape arises because new
ecotypes chemically modify their own environment (Fig. 4) (79).
Subpopulations form clusters defined by the acquisition of small
cassettes of genes involved in electron transfer, redox stress,
and/or synthesis of membrane polysaccharides (78). Increased
production of the latter is a recognized outlet of excess reduc-
ing power (25, 26, 40). In addition to providing an electron sink,
membrane polysaccharides also mediate biological interactions
(e.g., with phage, grazers, or other bacteria), suggesting that an
increase in electron flux could have produced ecological feed-
backs that drove further differentiation within Prochlorococcus
ecotypes (78) and in those with which it interacts (80). Lastly,

de
pt

h

mixed layer

dissolved 
organic 
carbon

nutrients

new ecotype

ancestral ecotype

adaptive radiation

ecotype abundance concentration

Fig. 4. The emergence of Prochlorococcus ecotypes. Eq. 5 suggests that
innovations increasing νe/νn trigger the emergence of new ecotypes (pur-
ple) that draw down limiting nutrients (n, green depth profile) in oceanic
surface waters as they go through adaptive radiation. Nutrient drawdown
near the surface increases ecosystem biomass and restricts ancestral eco-
types (pink) with a higher minimum subsistence nutrient concentration [n]
to greater depths in the water column where nutrient levels remain higher.
Finally, Eq. 5 suggests that by excreting increasing amounts of fixed carbon,
while maximizing νe/νn, the evolution of Prochlorococcus has increased the
long-term steady-state concentrations of DOC (orange depth profile).

this framework suggests that by promoting the fixation and excre-
tion of increasing amounts of organic carbon as a by-product of
increasing the nutrient affinity, the evolution of Prochlorococcus
increased the long-term steady-state concentrations of dissolved
organic carbon (DOC) in the oligotrophic oceans (Fig. 4), which
are much higher (by a factor of up to ∼2) than elsewhere in
the ocean (81). Because several compounds that Prochlorococ-
cus may be excreting are known iron-binding ligands, including
polysaccharides (82) and carboxylic acids like citrate (83), it may,
in turn, also play a key role in buffering trace metal bioavailabil-
ity in these environments.

When extended to the ecosystem level, Eq. 5 provides a mech-
anistic view of how the evolution of all microbial cells in the open
ocean is interconnected via the chemically coevolving environ-
ment (79, 84): Any innovation in any lineage that increases the
energy flux and lowers nutrient concentrations (Fig. 4) pushes
all other lineages to follow suit and adopt similar innovations.
Unlike in the classic “Red Queen hypothesis,” in which evolu-
tion is a zero-sum game (85), here, the evolutionary dynamic
increases resource capture, and thereby biomass, of the ecosys-
tem. [Similarly, a paleontological survey of the distribution and
body size of marine animals also led to the conclusion that
the energy flux and biomass of ecosystems increases over evo-
lutionary time (86).] The imprint of this collective dynamic
can be seen in the broadly convergent features of all oceanic
microbes. Slow growth, small cell size, streamlined genomes
and proteomes, and use of nonphospholipid membranes—
signature features of Prochlorococcus—are observed across both
autotrophic and heterotrophic microbes in the oligotrophic
oceans (61, 73, 87–89). Some of the photosynthetic machinery
modifications that increased the electron flux of Prochlorococcus
(Fig. 3) are also seen in diatoms and picoeukaryotes (33, 90, 91).
Many oceanic heterotrophs in turn supplement their energy sup-
ply from organics by capturing sunlight with proteorodhopsins
(92) and possess electron drains in their respiratory electron
transfer chains (93). In general, heterotrophic growth in the
oligotrophic oceans favors metabolic rate over efficiency—the
fraction of carbon taken up from the environment that is con-
verted into biomass is one of the lowest of any aquatic envi-
ronment on Earth (94). These observations are all consistent
with the notion that the maximization of νe/νn , and thereby
a lowering of steady-state nutrient concentrations (Eq. 5 and
Fig. 4), has been a general evolutionary driving force in ocean
ecosystems.

Emergence of Mutualism in Oceanic Microbial Ecosystems. Finally, if
lowering [n]∗ increases the excretion of organic carbon into the
environment, it could produce new opportunities for cooccurring
heterotrophs, like the ubiquitous and abundant SAR11 (73, 95).
SAR11 requires pyruvate and either glycolate, glycine, serine,
or glycine betaine (96); the latter four all feed into the same
pathway that starts from glycolate (96). Furthermore, coastal
SAR11 strains can replace pyruvate with glucose metabolized via
glycolysis, whereas open ocean strains lack glycolysis and have an
obligate requirement for pyruvate (97). Similar adaptations are
not observed in freshwater strains of SAR11 (98). Thus, oceanic
SAR11 populations have evolved a dependency on exactly the
compounds (pyruvate and glycolate) that our metabolic recon-
structions suggest emerged as excretion pathways in Prochloro-
coccus (Fig. 3 and SI Appendix, Fig. S1).

We mapped the distribution of metabolic genes across clades
(SI Appendix, Table S2) onto the phylogeny of marine SAR11
clades to further reconstruct the evolution of their metabolic
core (96–98) (Fig. 5 and SI Appendix, Fig. S4). We aimed to
resolve the innovations of open ocean lineages and look for
evidence of selection on pathway controls by looking for trans-
porters in the vicinity of metabolic genes. As in Prochlorococcus
(Fig. 3 and SI Appendix, Table S1), the metabolic core of SAR11
(SI Appendix, Fig. S4) evolved through a sequence of innovations
(Fig. 5 and SI Appendix, Table S2), including the step-wise com-
pletion of the glyoxylate shunt and the well-documented switch
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Fig. 5. Metabolic evolution of SAR11. Variants are shown in simplified
form along a gradient of νe/νn. Dashed orange lines highlight innovations
(SI Appendix, Fig. S4 and Table S2), which include disruptions or replace-
ments of glycolysis (all branches), the step-wise completion of the glyoxy-
late shunt (from group V to IIB to all groups IA) and the gain and loss of
excretion/uptake pathways. See main text for details. Excretion pathways
are represented as red dots and uptake pathways as blue dots. This recon-
struction is less certain than for Prochlorococcus because SAR11 has greater
diversity (99, 100), and as highlighted in the phylogeny (included clades in
green), many clades have no or few sequenced representatives (SI Appendix,
Table S2). Several branches were therefore drawn as a polytomy.

from Emden–Meyerhoff–Parnass (EMP) to Entner–Doudoroff
(ED) glycolysis (97). Glycolysis is disrupted in the 1.3A clade
(97) (Fig. 5 and SI Appendix, Table S2), which is most abun-
dant in surface waters where the Prochlorococcus HLII clade
dominates (Fig. 1) (99, 100). Glycolate uptake is also lost in this
SAR11 clade (Fig. 5 and SI Appendix, Table S2), which suggests
that pyruvate produced by the Prochlorococcus HLII ecotype
may have become its central source of carbon and energy (97).
Finally, similar to Prochlorococcus (SI Appendix, Fig. S2), chro-
mosome rearrangements positioned a series of transporter pro-
teins near key metabolic genes in SAR11 (SI Appendix, Fig. S5),
consistent with selection on the control of transport pathways.
We identified putative import transporters for pyruvate and gly-
colate, and putative export transporters for citrate and malate,
the latter exclusive to the 1A clade (Fig. 5 and SI Appendix, Fig.
S5). The emergence of malate export in SAR11 would provide
a potential source for the emergent malate uptake pathway of
Prochlorococcus that is putatively activated at night (Fig. 3 and
SI Appendix, Figs. S1 and S2).

Furthermore, the glyoxylate shunt is a TCA cycle bypass acti-
vated under redox stress in some microbes (101–103), while
the evolutionary switch from EMP to the higher-rate ED vari-
ant of glycolysis has, in other microbes, been attributed to an
increased energy supply (74). These observations are consistent
with selection acting to maximize νe/νn in both systems and
thereby producing pathways that transfer pyruvate and glyco-
late from Prochlorococcus to SAR11 and malate from SAR11 to
Prochlorococcus. Oligotrophic waters have nanomolar concen-
trations of pyruvate and glycolate, with midday maxima for the
latter, consistent with biological cross-feeding synchronized with
the input of sunlight, although abiotic photochemistry may also
contribute (104, 105).

Additional evidence for metabolic mutualism in these sys-
tems comes from observations regarding hydrogen peroxide
(HOOH), a by-product of biological electron transport, photo-
chemistry, and other abiotic processes (106). Prochlorococcus
and some later-diverging clades of SAR11 have lost HOOH-
detoxifying catalase (SI Appendix, Tables S1 and S2), and Prochl-
orococcus grows better in the presence of bacteria retaining
catalase (107, 108). This led to the “Black Queen” hypothesis,
which argues that subpopulations of ecosystems can save essen-
tial nutrients by giving up inevitably shared functions (such as
detoxifying the freely diffusible HOOH), so long as they are pre-
served by others in the ecosystem (109). Our reconstructions sug-
gest that the loss of catalase in Prochlorococcus and SAR11 coin-
cides with increased excretion of organic carbon, which provides
carbon and energy for catalase-containing bacteria (109).

These observations suggest that metabolic mutualisms are self-
amplifying feedback loops (110) that maximize the collective
νe/νn , and thus total productivity, of ecosystems. Specifically,
recycling otherwise wasted electrons through complementary
excretion/uptake pathways increases the average νe of partici-
pating cells. Similarly, the loss of functions that are shared and
require limiting nutrients (e.g., iron in catalase) in some mem-
bers of the community decreases the average νn . Mutualisms
thus raise the νe/νn of ecosystems—and lower the subsistence
nutrient requirements of their cells (Eq. 5 and Fig. 4)—beyond
what is possible for individual lineages in isolation. Because
excreting organic carbon lowers the minimal subsistence nutri-
ent requirements of individual cells, mutualisms of this kind are
emergent properties of ecosystems and avoid public goods dilem-
mas (48). An upper bound may exist on the maximization of
νe/νn due to the minimal requirements of being an autonomous
cell. As the smallest photosynthetic cell (6), Prochlorococcus may
be closest to this limit, reinforcing the notion that it has a cen-
tral role in shaping the features of ecosystems in the surface
oceans.

Are Plant Cells Microscopic Analogs of Oceanic Microbial Ecosys-
tems? It occurred to us that the metabolic organization of
oceanic microbial ecosystems and green plant cells are simi-
lar (Fig. 6): Intermediates of lower glycolysis and photorespira-
tion are central conduits of electron transfer from Prochlorococ-
cus to SAR11 and from chloroplasts to mitochondria in plant
cells, while TCA cycle intermediates facilitate electron trans-
fer in the opposite direction in both systems (111–113). Sim-
ilar patterns emerge at other levels of organization. Microbes
other than Prochlorococcus/SAR11 in ocean communities, and
organelles other than chloroplasts/mitochondria in plant cells,
appear central to peroxide detoxification (108, 113). The het-
erotrophic bacteria SAR86 and SAR116 may be important for
this function in the oligotrophic oceans, because they both pos-
sess catalase (114–116) and are abundant in warm stratified
waters (117). Prochlorococcus and chloroplasts both have PTOX
as an electron drain in their photosynthetic electron transfer
chain, whereas SAR11 and mitochondria both have alternative
oxidase (AOX) as an electron drain in their respiratory elec-
tron transfer chain (93, 113). Furthermore, like chloroplasts,
Prochlorococcus uses chlorophyll b in addition to chlorophyll
a, which has not been observed in cyanobacteria other than
Prochloron and Prochlorotrix (6). Finally, organelles of plant cells
have also undergone reductive genome evolution, and, for mito-
chondria, it has been argued that this increased the cellular
power density of eukaryotes (118)—similar to what we argued
for oceanic microbial ecosystems. The extensive convergence of
plant cells and oceanic microbial ecosystems highlights the con-
straints that metabolism imposes on the large-scale structure of
evolution (5) and suggests that the metabolic codependencies of
eukaryotic organelles can evolve without the physical intimacy of
endosymbiosis.

Biospheric Self-Amplification and the Rise of Atmospheric Oxygen.
We have proposed that maximizing the metabolic rate of cells
lowers their minimal subsistence nutrient requirements and that
this is achieved by maximizing the cellular electron-to-nutrient
flux ratio (νe/νn), while increasing the excretion of organic car-
bon (Eq. 5). This leads to an evolutionary dynamic that increases
total ecosystem biomass (Fig. 4) and paves the way for self-
amplifying feedback loops that recycle organic carbon (Fig. 6)
and reinforce the maximization of cellular metabolic rate at the
ecosystem level. It has been argued that the hierarchical orga-
nization of pathways within metabolism reflects the outgrowth
of self-amplifying feedbacks that increased the free energy con-
sumption of the emerging biosphere (5, 119). Our framework
extends those arguments into the world of phenotypically differ-
entiated cells and microbial ecosystems, and is consistent with
the theorem that the flow of energy through the biosphere pro-
motes its self-organization into chemical cycles (2).
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Fig. 6. The metabolic organization of Prochlorococcus and SAR11 and that
of green plant cells. For simplicity, many reaction sequences are shown as
single arrows without accurate stoichiometry. Blue/orange arrows indicate
organic carbon flux through similar pathways between Prochlorococcus and
SAR11 and between chloroplasts and mitochondria. The loss of glycolate
uptake in the open ocean 1A.3 clade (Fig. 5) is indicated by a dashed arrow.
The loss of catalase in Prochlorococcus is indicated by a crossed-out KatG
gene, while this cross-out is dashed for SAR11 to indicate the loss of cata-
lase in some of its later branching clades. In plant cells, catalase is similarly
located in the peroxisome and not chloroplasts/mitochondria (111–113) as
indicated by the crossed-out KatG genes. PTOX and AOX provide electron
drains in the electron transport chains of both systems, and chloroplasts and
Prochlorococcus both use chlorophyll b as well as a (6). 2OG, 2-oxoglutarate;
3PG, 3-phosphoglycerate; ACE, acetyl-CoA; KatG, catalase; CIT, citrate; DHAP,
dihydroxyacetone phosphate; GLA, glycerate; GLC, glycolate; GLY, glycine;
GOX, glyoxylate, ICE, isocitrate; MAL, malate; OAC, oxaloacetate; PEP, phos-
phoenoylpyruvate; PYR, pyruvate; RBP, ribulose bisphosphate; SER, serine;
SUC, succinate.

Our framework has implications for Earth history. If bio-
spheric self-amplification driven by the sun enhanced the burial
of organics and carbonates (120, 121) simply by increasing their
production, it would help explain the drawdown of atmospheric
CO2 and the rise of atmospheric O2 across several stages of
Earth history (122, 123). Perhaps not coincidentally, marine pic-
ocyanobacteria are estimated to have emerged near the transi-
tion from the Neoproterozoic (1,000–541 Ma) to the Phanero-
zoic (541 Ma to present) (124, 125), when sediments indicate
the occurrence of global glaciations (126, 127), global carbon
cycle perturbations (128–130), enhanced organic carbon burial
(120, 121), and a second major rise in atmospheric O2 toward
modern levels (123, 131–133).

The proposed evolutionary dynamic (Fig. 4) may provide
insights into the Neoproterozoic–Phanerozoic rise in atmo-
spheric oxygen. It has been argued that after the Great Oxi-
dation Event (GOE) the deep Proterozoic oceans remained
largely anoxic and euxinic (rich in H2S) (134). Recent studies

support anoxia, but suggest that the Proterozoic oceans were
instead largely ferruginous (rich in Fe2+), with euxinia restricted
to productive continental margins (135–137). It was argued this
general redox structure persisted because of N/Mo limitation
(138, 139), with Mo scavenged by H2S even with only limited
global euxinia (137), and P limitation due to its scavenging by
abundant Fe2+ (140). We suggest an additional negative feed-
back involving iron, the most widely used metal cofactor for bio-
logical electron transfer (141). The free O2 produced during the
rise of oxygenic photosynthesis transformed iron from its soluble
Fe2+ form into its insoluble Fe3+ form (142), effectively causing
early oxygenic photosynthesizers to self-limit their expansion in
the global oceans by locally extinguishing available iron. Extant
oceanic microbes surmount this negative feedback on photosyn-
thetic electron transfer through reduced cellular Fe demands
(33, 90, 91) (SI Appendix, Fig. S1), and through Fe- ligation
by DOC (143), including polysaccharides (82), citrate (83), and
other carboxylic acids, all of which may be excreted by marine
picocyanobacteria (37, 39) (SI Appendix, Fig. S1). Polysaccha-
rides and small carboxylic acids also enhance the dissolution of
minerals (144), and minerals in wind-blown dust are a major
source of Fe (145) and P (146) to the surface oceans. Thus,
we hypothesize that the evolution of marine picocyanobacteria
(Fig. 4) increased both the bioavailability and the overall sup-
ply of iron under aerobic conditions and helped transform the
oceans from an anoxic state rich in free iron (135, 136) to an
oxygenated state (131, 133) with DOC-bound iron. This positive
iron–DOC feedback, strengthened by an increased metabolic
rate, was critical in pushing the marine biosphere past a major
evolutionary bottleneck and paved the way for an expansion
of oceanic oxygenic photosynthesis and a rise in atmospheric
O2 (123).

Sedimentary and genomic records suggest several additional
positive feedbacks that could have pushed forth the Phanerozoic
oxygenation of the ocean. Increased Fe bioavailability under aer-
obic conditions coinciding with the drawdown of nitrogen (Fig.
4) would have created opportunities for N2-fixers, while ocean
oxygenation would have lifted their Mo-limitation by suppress-
ing euxinia (137, 138), together increasing the supply of nitrogen
to the oceans (124, 138, 139). This is consistent with the sug-
gested overlap in the rise of marine picocyanobacteria and plank-
tonic N2-fixers (124, 125). Furthermore, sediments suggest an
increase in oceanic P levels after the Neoproterozoic, and it was
argued that this was because a drop in Fe2+ concentrations less-
ened the scavenging of P (140). We add that if enhanced DOC-
dissolution of minerals from dust enhanced the oceanic iron sup-
ply under aerobic conditions, as we argued above, it could have
also enhanced the P supply (146), thus contributing to the recon-
structed rise in P levels (140).

These scenarios are similar to those of how the rise of land
plants impacted the Earth system. Nutrient-limited plants leach
Fe, P, and other nutrients from rocks by excreting small car-
boxylic acids from their roots (which suggests an increased
metabolic rate—Eq. 5) (147). It has therefore been argued that
plant colonization of the continents during the Phanerozoic
increased the weathering of rocks, and, in turn, the precipitation
of carbonates, which, together with the increased burial of plant-
derived organics, resulted in a drawdown of atmospheric CO2

and a rise in atmospheric O2 (148–150).
The convergent metabolic evolution of oceanic microbial

ecosystems and land plants (Fig. 6), which, we have argued, may
have impacted the Earth system in similar ways, suggests the
temporal profile of the Earth’s oxygenation (122, 123) may be
constrained by two biological stages. The first consisted of the
expansion of self-damping cyanobacterial O2-photosynthesis in
shallow aquatic environments and is associated with the GOE
(122, 123). The second consisted of the global expansion of
eukaryotic or “eukaryote-like” O2-photosynthesis—both onto
the continents and into the deep open ocean (Fig. 6)—with
a higher metabolic rate and correspondingly greater ability to
mobilize Fe and P under oxidizing conditions, and is associated
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with the Neoproterozoic Oxidation Event (122, 123, 132, 142).
Genomic studies estimate that chloroplast endosymbiosis lead-
ing to the rise of all photosynthetic eukaryotes occurred between
the late Paleoproterozoic (2,500–1,600 Ma) and the early Neo-
proterozoic (151–154). Paleontological studies in turn find a sig-
nificantly increased fossil diversity of eukaryotes (including pho-
tosynthetic eukaryotes) in the Neoproterozoic (155, 156), whose
increasing body sizes and fecal pellets could have moreover
strengthened the export and burial of organic carbon from the
oceans (157, 158).

As a final note, one could argue that the emergence of mod-
ern human societies is a variant of the general framework we
propose. As our populations expanded and extracted ever more
electrons from fossil fuels, we have increased global CO2, while
drawing down natural resources and global O2 (albeit a small
amount relative to the contemporary inventory for the latter)
(159, 160). In the process, we have become increasingly socially,
technologically, and economically interconnected, analogous to
what we have observed in the evolution of oceanic microbial
ecosystems and plant cells. As in those systems, this has increased
our collective ability to harvest more difficult-to-access natural
resources. Managing the biogeochemical perturbation that our

global emergence is imposing on the Earth system is one of
humanity’s greatest challenges.

Materials and Methods
We analyzed 56 genomes of cyanobacteria representative of the diver-
sity of this clade (161) obtained from the UniProt website, 56 genomes of
Prochlorococcus and marine Synechococcus (162), and 16 SAR11 genomes
obtained from the National Center for Biotechnology Information website.
We searched these genomes for the presence and absence of a set of refer-
ence enzymes (SI Appendix, Tables S1 and S2) using the BLASTp and tBLASTn
algorithms (163). We reconstructed phylometabolic trees (Fig. 2) by mapping
the distributions of metabolic genes onto the phylogenies of Prochlorococ-
cus (Figs. 1 and 3) and SAR11 (Fig. 5).
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SI	Text	
	
Glossary	of	terms	
	
Term	 Definition	 	 	 	 	 	 Units	
𝑎!! 	 Specific	nutrient	affinity	 	 	 	 	 L	(g	dry	weight)-1	time-1	
𝛽	 Fraction	of	the	cellular	carbon	flux	density	that	is	excreted	 unitless,	ranges	between	0	and	1	
#𝐶 #𝑒	 Efficiency	of	carbon	fixation		 	 	 	 carbon	atoms	electron-1	
Δ!𝐺	 Free	energy	of	reaction	 	 	 	 	 kJ	mol-1	
𝐸 	 Enzyme	concentration	 	 	 	 	 moles	of	enzyme	(g	dry	weight)-1	
𝐹	 Faraday	constant	 	 	 	 	 	 9.6485	×	104	coulombs	mol-1	
𝐼	 Light	intensity	 	 	 	 	 	 µmol	photons	m-2	time-1	
𝐾!,!	 Whole-cell	Michaelis	constant	 	 	 	 moles	of	𝑛	L-1	
𝑘!	 Rate	constant	 	 	 	 	 	 moles	of	𝑛	(moles	of	enzyme)-1	time-1	
𝜇	 Specific	growth	rate	 	 	 	 	 time-1	
𝜇!"#	 Maximal	intrinsic	growth	rate	 	 	 	 time-1	
𝑛 	 Environmental	concentration	of	nutrient	𝑛	 	 	 moles	of	𝑛	L-1	
𝑛 *	 Minimal	subsistence	concentration	of	nutrient	𝑛	 	 moles	of	𝑛	L-1	
𝑃!	 Membrane	permeability	of	nutrient	𝑛		 	 	 µm	time-1	
𝜙!"## 	 Quantum	efficiency	of	PSII	 	 	 	 	 electrons	photon-1	
∆𝜓	 Membrane	potential	 	 	 	 	 mV	
𝑄!	 Mass-normalized	cell	quota	of	nutrient	𝑛	 	 	 moles	of	𝑛	(g	dry	weight)-1		
𝑅	 Gas	constant	 	 	 	 	 	 8.3145	J	K-1	mol-1	
𝑟!"## 	 Cell	radius	 	 	 	 	 	 µm	

𝜎!"## 	 Mass-normalized	whole-cell	PSII	absorption	cross-section		 m2	of	PSII	(g	dry	weight)-1	
𝑇	 Temperature	 	 	 	 	 	 K	
𝜈!	 Cellular	electron	flux	density	 	 	 	 µmol	electrons	(g	dry	weight)-1	time-1	
𝜈!	 Nutrient	uptake	flux	density	 	 	 	 moles	of	𝑛	(g	dry	weight)-1	time-1	
𝑉!"#	 Mass-normalized	cytoplasmic	volume	 	 	 mL	(g	dry	weight)-1		
𝑉!"#	 Maximal	nutrient	uptake	flux	density			 	 	 moles	of	𝑛	(g	dry	weight)-1	time-1	
𝑍	 Nutrient	charge	 	 	 	 	 	 unitless	
	
Hypotheses	for	benefits	of	draining	excess	reducing	power	into	the	environment	
	
Studies	 of	 oceanic	 phytoplankton	 have	 led	 to	 several	 hypotheses	 of	 why	 cells	 may	 drain	 excess	 reducing	
power	 into	the	environment	rather	than	 lowering	their	photosynthetic	electron	 flux.	One	suggestion	 is	 that	
slow,	 nutrient-limited	 growth	 increases	 the	 need	 for	ATP-heavy	maintenance	metabolism	 relative	 to	more	
NAD(P)H-heavy	 de	 novo	 biosynthesis,	 and	 that	 the	 water-water	 cycle	 mediated	 by	 PTOX	 allows	 cells	 to	
increase	 their	 relative	 ATP/NAD(P)H	 supply	 [1].	 Another	 argument	 is	 that	 low	 iron	 concentrations	 in	 the	
open	 ocean	 promote	 the	 more	 iron-efficient	 modified	 electron	 flow	 facilitated	 by	 PTOX	 [2-4],	 which	 is	
consistent	with	the	loss	of	several	iron-sulfur	enzymes	in	the	rest	of	Prochlorococcus’	metabolic	core	(Fig.	S1).	
However,	neither	hypothesis	clarifies	why	Prochlorococcus	should	acquire	ATP-consuming	pathways	involved	
in	the	excretion	of	organic	carbon	prior	to	innovations	in	the	electron	transfer	chain	that	would	appear	most	
effective	at	increasing	both	iron	efficiency	and	the	relative	supply	of	ATP.	
	
Other	hypotheses	for	why	a	photoautotrophic	cell	might	drain	excess	reducing	power	into	the	environment	
come	from	studies	on	the	excretion	of	organic	carbon	by	heterotrophic	microbes.	One	proposes	that	excreting	
organic	carbon	 facilitates	a	 less	efficient,	but	 intrinsically	 faster,	mode	of	ATP	production	that	requires	 less	
protein,	allowing	cells	with	an	abundant	energy	supply	to	achieve	faster	growth	by	allocating	more	protein	to	
biosynthesis	[5-7].	This	 is	consistent	with	Prochlorococcus	using	the	Entner-Doudoroff	(ED)	rather	than	the	
Emden-Meyerhoff-Parnas	(EMP)	variant	of	glycolysis	to	catabolize	glucose	as	a	supplementary	energy	source	
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alongside	photosynthesis	[8],	since	ED	glycolysis	has	a	higher	intrinsic	rate	and	lower	protein	cost	than	EMP	
glycolysis	[6].	However,	Prochlorococcus	is	characterized	by	a	slow	growth	rate	[9,10],	and	it	is	unclear	why	
its	cells	should	supplement	phototrophy	with	chemoheterotrophy	if	the	energy	supply	outpaces	the	nutrient	
supply	(Fig.	1	in	the	main	text).	It	is	similarly	unclear	how	excreting	organic	carbon	would	lower	the	protein	
requirement	of	ATP	production	during	photosynthesis.	Another	suggestion	 is	 that	excreting	organic	carbon	
and	 other	 forms	 of	 “energy	 spilling”	 (e.g.	 various	 enzymatic	 futile	 cycles)	 allow	 nutrient-limited	 cells	 to	
maintain	high	energy	throughput	of	their	metabolism	so	they	can	rapidly	‘reignite’	growth	once	limitation	is	
lifted	 [11,12].	However,	while	 the	deeper-branching	Synechococcus	 is	 found	 throughout	 the	 surface	 oceans	
and	 can	 exhibit	 rapid	 blooms	 in	 response	 to	 nutrient	 influxes,	 particularly	 in	 coastal	 regions	 [13,14],	
Prochlorococcus	 is	 restricted	 to	 the	 low	nutrient	 oligotrophic	 oceans	 [15-17]	 and	maintains	 a	 fairly	 steady	
growth	rate	[18].	Thus,	while	various	hypotheses	provide	clues	about	relevant	driving	 forces,	 they	 leave	us	
without	a	completely	satisfying	explanation	for	the	metabolic	evolution	of	Prochlorococcus	(Fig.	3	in	the	main	
text	and	surrounding	discussion).	
	
Nutrient	uptake	and	nutrient	affinity	
	
Evidence	 suggests	 that	 the	 increasing	 excretion	 of	 organic	 carbon	 over	 the	 course	 of	 evolution	 in	
Prochlorococcus	is	part	of	a	general	trend	that	increases	the	cellular	metabolic	rate,	and	that	this	may	benefit	
the	 uptake	 of	 limiting	 nutrients	 (see	 main	 text	 for	 discussion).	 To	 understand	 how	 metabolic	 rate	 and	
nutrient	 uptake	 are	 related	 we	 begin	 by	 examining	 basic	 principles	 of	 nutrient	 uptake.	 We	 can	 consider	
nutrient	uptake	by	a	cell	as	the	reaction	𝑛 ⇌ 𝑛! ,	where	𝑛	is	the	nutrient	in	the	environment	at	concentration	
𝑛 	and	𝑛! 	is	nutrient	𝑛	internal	to	the	cell	at	concentration	 𝑛 ! .	The	flux	density	of	nutrient	uptake	𝜈!	is	given	
by	the	standard	Michaelis-Menten	equation:	
	
	 𝜈! =

𝑉!"# 𝑛
𝐾!,! + 𝑛

	 (1)	

	
where	𝑉!"# 	is	 the	 maximal	 saturated	 uptake	 rate	 of	 the	 transport	 reaction	 and	𝐾!,! 	is	 the	 Michaelis	
constant. Under	extreme	nutrient-limitation	( 𝑛 	<<	𝐾!,!)	Eq.	1	simplifies	to	[19]:	
	
	 𝜈! = 𝑉!"# 𝑛 𝐾!,! = 𝑎!! 𝑛 	 (2)	
	
where	𝑎!! 	is	the	specific	nutrient	affinity.	The	relationship	between	𝜈!,	𝑎!! ,	𝑉!"# ,	and	𝐾!,!	is	shown	visually	in	
Fig.	S3.	To	understand	how	cellular	growth	is	affected	by	nutrient-limitation,	we	can	rewrite	Eq.	2	as:	
	
	 𝑛 = 𝜈! 𝑎!! = 𝜈!𝐾!,! 𝑉!"#	 (3)	
	
The	minimal	subsistence	nutrient	concentration	 𝑛 *	is	the	lowest	steady-state	value	of	 𝑛 	at	which	cells	can	
achieve	net	positive	growth.	Thus,	cells	can	lower	their	 𝑛 *	through	two	basic	adaptations:	increasing	their	
specific	affinity	𝑎!! 	or	decreasing	their	required	nutrient	flux	density	𝜈!	(Eq.	3	and	Fig.	S3).	Since	the	required	
nutrient	flux	density	is	given	by	𝜈! = 𝜇𝑄!	(Eq.	2	in	the	main	text),	where	𝜇	is	the	specific	growth	rate	and	𝑄!	
is	 the	 mass-normalized	 cellular	 quota	 of	 nutrient	𝑛,	 cells	 can	 therefore	 adapt	 to	 nutrient-limitation	 by	
lowering	𝜇	and/or	𝑄!	(blue	arrows	in	Fig.	S3).	Alternatively,	since	the	nutrient	affinity	is	equal	to	𝑉!"# 𝐾!,!,	
cells	 can	 adapt	 to	 nutrient-limitation	 by	 increasing	𝑉!"#	and/or	 decreasing	𝐾!,!,	 which	 increases	𝜈!	(and	
thereby	𝜇)	at	a	given	nutrient	concentration	(red	arrows	in	Fig.	S3).	 It	 is	the	selection	for	an	increasing	𝑉!"#	
(and	thus	𝑎!!)	that	we	argue	explains	the	benefit	of	increasing	metabolic	rate	under	nutrient-limitation,	as	we	
discuss	next.	
	
Relating	nutrient	affinity	and	metabolic	rate	
	
To	understand	how	metabolic	rate	affects	𝑉!"#	and	thereby	the	minimal	subsistence	nutrient	concentration	
of	 cells	 (Eq.	 3),	we	 perform	 a	 thought	 experiment	 using	 basic	 principles	 of	 reaction	 kinetics.	 The	 scenario	
outlined	above	considers	only	the	initial	uptake	reaction	𝑛 ⇌ 𝑛! ,	but	in	reality	that	reaction	is	part	of	a	large	
network	of	reactions	(metabolism)	that	collectively	processes	the	entire	conversion	from	external	nutrient	to	
biomass.	 In	 principle	 cells	 can	 thus	 increase	 the	 rate	 of	 nutrient	 uptake	 by	 increasing	 the	 rate	 of	 the	
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downstream	 metabolic	 network	 [19,20],	 which	 can	 be	 further	 understood	 by	 considering	 a	 simplified	
metabolic	network	consisting	of	two	reversible	reactions:	
	
	 𝑛 ⇌ 𝑛! 	 (4)	
	 𝑛! ⇌ 𝑀	 (5)	
	
The	 reaction	 rate	 of	 reaction	 5	 (the	 “downstream	metabolic	 network”	 that	 converts	 nutrient	𝑛	to	 biomass	
building	block	𝑀)	is	given	by	the	standard	reversible	Michaelis-Menten	equation:	
	
	 𝜈!!→! = 𝜈! − 𝜈! = 𝐸

𝑘! 𝑛 ! 𝐾!,! − 𝑘! 𝑀 𝐾!,!
1 + 𝑛 ! 𝐾!,! + 𝑀 𝐾!,!

	 (6)	

	
Where	𝜈! 	and	𝜈! 	are	 the	 forward	 and	 backward	 rates,	𝑘! 	and	𝑘! 	are	 the	 forward	 and	 backward	 rate	
constants,	 𝐸 	is	the	enzyme	concentration	and	 𝑀 	is	the	concentrations	of	𝑀	inside	the	cell.	The	Gibbs	free	
energy	of	reaction	of	reaction	5	is	given	by	[21,22]:	
	
	

Δ!𝐺 = −𝑅𝑇 ln
𝑛 !𝐾!,!𝐾!"
𝑀 𝐾!,!

	
(7)	

	
Where	𝑅	is	the	gas	constant,	𝑇	is	the	temperature,	and	𝐾!" = 𝑘! 𝑘!	is	the	equilibrium	constant.	If	we	assume	
that	strong	environmental	nutrient-limitation	leads	to	strong	nutrient-limitation	of	the	internal	assimilation	
reaction	 ( 𝑛 ! 	<<	𝐾!,!)	and	we	make	 the	additional	 simplifying	assumption	 that	enzyme	active	sites	 for	 the	
backward	reaction	are	also	far	from	saturated	( 𝑀 	<<	𝐾!,!)	we	can	rewrite	Eq.	6	to	[21-23]:	
	
	

𝜈!!→! = 𝐸
𝑘! 𝑛 !

𝐾!,!
1 − 𝑒!!! !" 	

(8)	

	
Eq.	8	allows	us	to	consider	how	increasing	the	metabolic	rate	of	cells	 impacts	the	nutrient	uptake	rate.	In	a	
closed	 system,	 reactions	will	 tend	 to	 equilibrate	 toward	 a	 state	with	 no	net	 flux	 and	Δ!𝐺	=	 0	 [24].	 A	 given	
starting	ratio	 𝑛 ! 𝑀 	will	thus	undergo	a	more	significant	decrease	for	reactions	with	an	intrinsically	more	
negative	Δ!𝐺	(Eq.	7).	This	same	principle	holds	 in	open	systems,	except	that	there	equilibrium	is	prevented	
by	a	steady	flux	of	𝑛	in	and	𝑀	out	of	the	system.	Thus,	in	an	open	system,	a	reaction	with	a	more	negative	Δ!𝐺	
(e.g.	due	 to	a	high	value	of	𝐾!" ,	or	coupling	 the	reaction	 to	a	more	exothermic	second	reaction)	will	have	a	
higher	intrinsic	rate	(Eq.	8)	and	will	settle	into	a	steady	state	with	a	lower	ratio	 𝑛 ! 𝑀 	(Eq.	7).	But,	because	
the	 rate	 of	 reaction	 4	 also	 depends	 on	 𝑛 ! ,	 a	more	 negative	Δ!𝐺	for	 reaction	 5	 thereby	 creates	 a	 “pull”	 on	
reaction	4	by	making	 its	Δ!𝐺	more	negative,	 thus	 increasing	 the	rate	of	nutrient	uptake	 into	 the	cell	and	 in	
turn	 the	overall	 flux	 from	𝑛	to	𝑀.	 Comparing	 the	 forms	of	Eq.	 8	 and	Eq.	2,	we	 can	 see	 that	 for	 a	 reversible	
system,	𝑎!! 	and	𝑉!"#	are	given	by:	
	
	

𝑎!! =
𝐸 𝑘!

𝐾!,!
1 − 𝑒!!! !" 	

(9)	

	
	 𝑉!"# = 𝐸 𝑘! 1 − 𝑒!!! !" 	 (10)	
	
In	 real	 systems,	 nutrient	 transport	 (rxn	 4)	 is	 often	 an	 active	 process.	 Indeed,	 active	 transport	 becomes	
essential	 under	 nutrient-limitation	 as	 the	 following	 examples	 show,	 which	 thus	 slightly	 modifies	 the	
considerations	 above.	 Active	 transport	 drives	 up	 𝑛 ! 	relative	 to	 𝑛 ,	 thereby	 driving	 forward	 downstream	
metabolism	 (rxn	5)	without	 the	need	 to	 increase	 the	 energetic	driving	 force	 on	 the	 latter.	However,	 active	
transport	also	requires	an	energetic	driving	 force,	which	scales	with	 the	natural	 log	of	 the	ratio	of	 internal	
and	 external	 nutrient	 concentrations	 [25].	 Active	 transport	 thus	 follows	 the	 same	 basic	 principle	 as	
stimulating	 passive	 uptake	 by	 energetically	 driving	 downstream	 metabolism,	 with	 the	 biggest	 difference	
being	where	 in	 the	 network	 the	 driving	 force	 is	 applied.	Moreover,	 the	 energetic	 driving	 of	 uptake	 and	 of	
downstream	 reactions	 can	 work	 in	 tandem	 to	 increase	 the	 overall	 rate	 of	 nutrient	 assimilation.	 This	 is	
illustrated	using	the	Gibbs	free	energy	for	the	nutrient	transport	reaction	(rxn	4),	which	is	given	by	[25]:	
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Δ!𝐺 = 𝑅𝑇 ln
𝑛 !

𝑛
+ 𝑍𝐹∆𝜓	 (11)	

	
where	𝑍	is	 the	 unit	 charge	 of	 the	 transported	 nutrient,	𝐹	is	 the	 Faraday	 constant	 and	∆𝜓	is	 the	membrane	
potential	(mV).	Thus,	internally	accumulating	nutrients	(first	term	in	right	hand	side	of	Eq.	11)	to	commonly	
assumed	physiological	 concentrations	of	1	mM	 from	near-vanishing	background	 levels	 (<0.1	nM),	 as	 is	 the	
case	 for	N,	P	&	Fe	 in	much	of	 the	oligotrophic	oceans	[26],	carries	a	 free	energy	cost	Δ!𝐺	>	40	kJ/mol.	This	
cost	is	then	combined	with	the	free	energy	cost	of	transport	against	the	electric	gradient	(second	term	in	right	
hand	side	of	Eq.	11)	to	give	the	total	 free	energy	cost.	For	example,	assuming	a	typical	bacterial	membrane	
potential	of	120	mV	(negative	inside)	[25],	the	total	free	energy	cost	of	transporting	phosphate	(HPO42-,	Z	=	-2	
in	 seawater	 of	 pH	 =	 8)	 is	Δ!𝐺	>	 63	 kJ/mol.	 By	 comparison,	 at	 pH=7.5	 and	 an	 ionic	 strength	 of	 0.5	 M	 the	
hydrolysis	of	ATP	(ATP	+	H2O	à	ADP	+	Pi)	has	a	free	energy	of	reaction	of	Δ!𝐺	=	–44.8	kJ/mol	if	all	reactants	
have	a	1	mM	concentration	[27],	which	 is	 thus	 insufficient	to	allow	any	significant	phosphate	uptake	 in	the	
oligotrophic	oceans	using	the	assumptions	above.	In	the	same	scenario,	accumulating	phosphate	to	only	0.01	
mM	instead	of	1	mM	lowers	the	total	free	energy	cost	of	transport	from	to	Δ!𝐺	>	52	kJ/mol,	while	increasing	
the	ATP/ADP	ratio	to	10	(in	addition	to	lowering	 𝑃! 	to	0.01	mM)	lowers	the	free	energy	of	ATP	hydrolysis	to	
Δ!𝐺	=	 –61.9	 kJ/mol	 [27],	 together	 allowing	 phosphate	 transport	 to	 proceed	 in	 the	 net	 forward	 direction	
under	conditions	like	those	in	the	oligotrophic	oceans.		
	
Further,	applying	an	energetic	driving	force	solely	on	the	uptake	reaction	itself	may	not	always	be	the	most	
efficient	solution.	For	example,	under	N-limitation	the	uptake	and	assimilation	of	ammonia	(𝑁𝐻!!)	can	lead	to	
a	futile	cycle,	as	its	conjugate	base	(𝑁𝐻!)	diffuses	passively	out	of	the	cell,	and	this	loss	rate	increases	with	the	
concentration	 gradient	 [28].	 It	 is	 therefore	 thought	 that	 N-limited	 cells	 will	 poise	 the	 internal	𝑁𝐻!!	
concentration	 to	 the	 minimal	 viable	 value	 to	 limit	 futile	 cycling	 [29],	 which	 is	 helped	 by	 increasing	 the	
energetic	driving	of	downstream	reactions.	This	can	be	understood	by	examining	the	Glutamine	Synthetase	
reaction	(Glutamate	+	NH3	+	ATP	⇌	Glutamine	+	ADP	+	Pi),	the	central	highway	for	nitrogen	into	metabolism	
[25].	 At	 pH=7.5	 and	 an	 ionic	 strength	 of	 0.5	 M	 and	 again	 using	 commonly	 assumed	 physiological	
concentrations	 of	 1	 mM	 for	 all	 reactants,	 glutamine	 synthesis	 has	 a	Δ!𝐺	of	 –15.4	 kJ/mol	 [27],	 making	 it	
essentially	 irreversible.	However,	an	internal	𝑁𝐻!!	concentration	of	1	mM	would	lead	to	high	levels	of	 futile	
transport	cycling	as	can	be	seen	by	comparing	the	fluxes	for	nitrogen	assimilation	(Eq.	2	in	the	main	text)	and	
diffusive	𝑁𝐻!	loss	[29]:	
	
	 𝜐! = 𝜇𝑄!	 (12)	
	
	 𝜐!,!"## = 3𝑃!"! 𝑁𝐻! !" − 𝑁𝐻! !" 𝑉!"# 𝑟!"##	 (13)	
	
where	𝑃!"! 	is	the	membrane	permeability	for	𝑁𝐻!	(µm	time-1),	 𝑁𝐻! !",!"#	are	the	internal	and	external	
concentrations	of	𝑁𝐻!	(moles	L-1),		𝑉!"#	is	the	mass-normalized	cytoplasmic	volume	(mL	(g	of	dry	weight)-1),	
𝑟!"## 	is	the	cell	radius	(µm),	𝑄!	is	the	mass-normalized	cell	quota	of	nitrogen	(moles	of	𝑁	(g	of	dry	weight)-1)	
and	µ	is	the	specific	growth	rate	(time-1).	(For	consistency	we	have	modified	the	equations	of	Ref.	[29]	to	give	
fluxes	in	units	of	(g	of	dry	weight)-1	rather	than	L-1.)	If	we	assume	ammonia	is	actively	taken	up	as	𝑁𝐻!!	to	an	
internal	concentration	 𝑁𝐻!! !"	=	1	mM,	and	we	further	assume	an	internal	pH	of	7.5,	then	 𝑁𝐻! !"	=	18	µM	
(the	pKa	of	ammonia	is	9.25	at	room	temperature).	Further	assuming	a	Prochlorococcus	cell	radius	of	𝑟!"## 	=	
0.3	µm,	a	typical	bacterial	value	for	𝑉!"#	of	2	mL	(g	of	dry	weight)-1	[29],	and	a	relatively	conservative	𝑃!"! 	of	
10	µm/s	(values	up	to	2000	µm/s	have	been	measured	[29]),	then	if	 𝑁𝐻! !" is	near-vanishing	[26]	the	
diffusive	NH3	loss	would	be	3.6	µmole	(g	of	dry	weight)-1	s-1.	Meanwhile,	a	Prochlorococcus	cell	with	a	𝑄!	of	
~7	mmole	N	(g	of	dry	weight)-1	(based	on	an	N	content	of	~0.1	g	(g	of	dry	weight)-1	[30]	and	a	molar	mass	of	
N	of	14	g	mole-1),	growing	near	its	maximal	growth	rate	of	~0.7	day-1	would	have	a	N	assimilation	flux	of	57	
nmole	(g	of	dry	weight)-1	s-1.		The	loss	flux	of	ammonia	through	passive	diffusion	would	thus	be	two	orders	of	
magnitude	higher	than	the	assimilation	flux,	leading	to	very	high	levels	of	futile	transport	cycling.	
	
Keeping	all	other	reactant	concentrations	fixed	and	lowering	 𝑁𝐻!! !"	to	1	µM	and	thereby	 𝑁𝐻! !"	to	0.018	
µM	would	lower	the	passive	diffusive	loss	rate	of	𝑁𝐻!	to	3.6	nmole	(g	of	dry	weight)-1	s-1,	well	below	the	
assimilation	flux	calculated	above.	However,	the	net	flux	of	the	glutamine	synthetase	reaction	would	run	in	
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reverse	with	a	Δ!𝐺	of	+1.7	kJ/mol	[27],	creating	a	kinetic	bottleneck	in	the	assimilation	of	ammonia.	As	
before,	increasing	the	ATP/ADP	ratio	from	1	to	10	while	lowering	 𝑃! 	to	0.01	mM	would	lower	the	Δ!𝐺	below	
0	and	drive	glutamine	synthesis,	and	thereby	ammonia	assimilation,	forward	in	the	oligotrophic	oceans.		
	
We	note	that	cells	using	nitrate	(𝑁𝑂!!)	as	their	nitrogen	source	face	an	intermediary	scenario	compared	to	the	
examples	of	phosphate	or	ammonia	uptake.	Nitrate	has	a	charge	Z	=	–1	at	pH	=	8,	resulting	in	a	free	energy	
cost	of	uptake	Δ!𝐺	>	51.5	kJ/mol	when	accumulating	it	to	an	internal	concentration	of	1	mM	from	external	
levels	of	<0.1	nM	[26].	This	is	lower	than	the	free-energy	cost	of	uptake	for	phosphate	(which	has	a	higher	
cost	due	to	its	charge	of	Z	=	–2),	thus	requiring	less	energetic	driving	than	the	latter.	However,	nitrate	uptake	
again	faces	the	costs	of	futile	transport	cycling,	since	it	is	first	reduced	to	𝑁𝐻!!	before	being	assimilated	via	
glutamine	synthetase.	Passive	loss	of	𝑁𝐻!	would	thus	also	be	significant	during	growth	on	nitrate	in	the	
oligotrophic	oceans,	unless	 𝑁𝐻!! !"	is	poised	at	the	minimal	viable	value	[29],	again	requiring	greater	
energetic	driving	(through	an	increased	ATP/(ADP×Pi)	ratio)	of	glutamine	synthesis.	
	
The	examples	above	illustrate	the	importance	of	increasing	the	ATP/(ADP×Pi)	ratio	to	drive	forward	nutrient	
assimilation	in	the	oligotrophic	oceans.	However,	increasing	the	ATP/(ADP×Pi)	ratio	also	makes	ATP	
synthesis	more	thermodynamically	uphill,	which	therefore	requires	a	greater	proton	motive	force,	and	thus	
for	photosynthetic	cells	a	greater	photosynthetic	electron	flux	[20].	
	
Increasing	metabolic	rate	and	the	benefits	of	excreting	organic	carbon	
	
The	preceding	sets	the	stage	for	understanding	why	excreting	organic	carbon	may	be	beneficial	to	cells	with	a	
plentiful	 energy	 supply.	 Cells	 can	 drive	 up	 their	 ATP/ADP	 ratio	 by	 increasing	 the	 ATP	 supply	 rate,	 but	 to	
maintain	 stead-state	 balance	must	 then	 also	 increase	 their	ATP	 consumption	 rate	 [11,20].	 A	major	 sink	 of	
ATP	 in	 a	 photosynthetic	 cell	 is	 CO2-fixation.	 But,	 cells	 are	 limited	 in	 the	 carbon-flux	 density	 then	 can	
accommodate,	 and	 this	 upper	 limit	 is	 proportional	 to	 both	 the	 maximal	 cellular	 carbon	 density	 (i.e.	 the	
maximal	𝑄!)	and	 the	growth	rate	𝜇.	This	upper	 limit	on	 the	carbon	 flux	density	 is	 thus	 lower	under	strong	
nutrient-limitation,	which	 favors	 slow	growth	 (Eq.	 3),	 but	 in	principle	 exists	 for	 any	𝜇.	We	 thus	 argue	 that	
excretion	of	organic	carbon	allows	cells	to	increase	their	metabolic	rate	above	the	point	where	the	carbon	flux	
exceeds	 the	 growth	 requirement.	 This	 can	 be	 further	 understood	 by	 expanding	 Eq.	 3	 using	 several	
assumptions.	 We	 assume	 that	 under	 nutrient	 limitations	 cells	 take	 up	 limiting	 nutrient	𝑛	with	 maximal	
efficiency,	 but	 can	 be	 inefficient	with	 all	 non-limiting	 resources.	 In	 other	words,	 if	we	 further	 assume	 that	
biomass	 has	 an	 elemental	 stoichiometry	𝑄! 𝑄!,	 then	 cells	 must	 fix	 CO2	 at	 a	 rate	 at	 least	 equivalent	 to	
𝜈!(𝑄! 𝑄!),	 but	 can	 in	 principle	 fix	 carbon	 at	 higher	 rates	 and	 excrete	 the	 excess	 carbon	 flux.	We	 further	
assume	that	the	fraction	of	fixed	carbon	that	is	excreted	or	respired	is	𝛽,	which	falls	in	a	range	(0<𝛽<1),	and	
that	the	efficiency	of	CO2-fixation	 is	#𝐶 #𝑒.	The	carbon/electron	flux	ratio	#𝐶 #𝑒	depends	on	the	oxidation	
state	of	 the	carbon	source,	biomass	and	excreted	carbon.	For	photosynthetic	cells	 fixing	CO2	and	producing	
biomass	 and	excreted	 carbon	at	 an	 average	oxidation	 state	of	CH2O,	#𝐶 #𝑒	is	 1/4	 (i.e.	 CO2	+	4	H+	+	4	 e-	⇌	
CH2O	+	H2O).	Photoprotective	mechanisms	such	as	PTOX	(Fig.	S1)	that	direct	electron	flux	out	of	the	electron	
transport	chain	prior	 to	carbon-fixation	act	 to	 lower	#𝐶 #𝑒.	Under	 these	assumptions,	 the	nutrient,	carbon	
and	electron	flux	densities	of	nutrient-limited	cells	are	related	through:	
	
	 𝜈! =

𝑄!
𝑄!

𝜈! #𝐶 #𝑒 1 − 𝛽 	 (14)	

	
Finally,	we	can	combine	Equations	3,	9	and	14	to	give:	
	
	 𝑛 =

𝐾!,!
𝐸 𝑘!

×
𝜈!

(1 − 𝑒!!! !")
=

𝐾!,!
𝐸 𝑘!

×
𝑄!
𝑄!

×
𝜈! #𝐶 #𝑒 1 − 𝛽
(1 − 𝑒!!! !")

	 (15)	

	
Eq.	15	describes	how	selection	to	lower	 𝑛 *	shapes	cellular	features.	As	discussed	earlier,	selection	to	lower	
𝑛 *	 favors	 decreases	 in	𝜈!	and	Δ!𝐺	(Equations	 3,	 9	 and	 10),	 and	 as	 we	 just	 argued	 decreases	 in	Δ!𝐺	are	
achieved	through	an	increased	electron	flux.	But	an	increased	electron	flux	also	leads	to	an	increased	carbon	
flux,	which	 in	 turn	 acts	 to	 drive	 up	 𝑛 *.	 Therefore,	 selection	 to	 lower	 𝑛 *	 should	 simultaneously	 favor	 an	
increasing	𝜈! 𝜈!	and	 an	 increasing	 excretion	 of	 organic	 carbon,	 exactly	 as	we	 observe	 for	 the	 evolution	 of	
Prochlorococcus.	See	main	text	for	further	discussion.	
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SI	Figures	
	

	

Figure	S1.	Details	of	the	changes	in	the	photosynthetic	machinery	(left	panel)	and	metabolic	core	(right	panel)	of	Prochlorococcus	
during	 its	 evolutionary	 divergence	 (Fig.	 3	 of	 main	 text)	 from	 a	 universal	 cyanobacterium	 (black).	 The	 photosystems	 of	
Prochlorococcus	(purple)	have	an	altered	set	of	accessory	pigments	[1-4]	and	the	PSII:Cyt	b6f:PSI	ratio	increases	along	its	phylogeny	
[5,6].	 The	 photosynthetic	 electron	 transport	 chain	 of	 the	 LLI	 and	 HL	 clades	 further	 contains	 the	 Plastoquinol	 Terminal	 Oxidase	
(PTOX)	(Table	S1)	as	indicated	by	the	orange	box.	Within	core	carbohydrate	metabolism,	key	genes	are	gained	and	lost	as	indicated	
by	blue	and	yellow	lines	(Table	S1).	Iron-sulfur	cluster	enzymes	are	highlighted	in	brown.	Red	circles	indicate	putative	redox	safety	
valves,	 including	 those	 excreting	 pyruvate,	 glycolate	 and	 citrate	 or	 isocitrate,	 while	 the	 blue	 circle	 indicates	 a	 putative	 uptake	
pathway	for	malate.	We	suspect	citrate	rather	than	isocitrate	is	excreted	because	under	iron-limitation	or	oxidative	stress	aconitase	
(two-step	reaction	17	converting	citrate	to	isocitrate)	is	post-translationally	converted	to	the	iron	regulatory	protein	(IRP)	[7],	which	
may	lead	to	accumulation	of	citrate.	Enzyme	names	of	numbered	reactions	are	shown	in	Table	S1	and	Fig.	S2.	
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Figure	S2.	Genomic	evolution	and	expression	of	transport	pathways	in	Prochlorococcus.	Chromosomal	location	of	key	metabolic	genes	
and	ABC	 transporters	 are	 shown	 along	 the	Prochlorococcus	 phylogeny	 (left	 panel).	 In	 some	plots	 only	Cyanobium	gracile	 and	marine	
picocyanobacteria	 are	 shown	 because	 the	 corresponding	metabolic	 genes	 are	 absent	 in	 other	 cyanobacteria	 (Table	 S1).	 Color-coded	
names	of	genes	are	shown	on	the	right,	and	gene	numbers	are	as	in	Fig.	S1.	Changes	in	the	relative	transcript	 levels	of	genes	(log-fold	
changes	in	mRNA	number)	in	Prochlorococcus	MED4	(HLI	clade)	over	a	diel	L:D	cycle	[redrawn	from	Ref.	1]	are	shown	on	the	right.		

1. Zinser	ER	et	al.	(2009)	Choreography	of	the	transcriptome,	photophysiology,	and	cell	cycle	of	a	minimal	photoautotroph,	
Prochlorococcus.	PLoS	One	4(4):e5135	
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Figure	 S3.	 Kinetics	 of	 nutrient	 uptake	 (based	 on	 Ref.	 [1]).	 The	 Y-axis	 is	 the	 nutrient	 uptake	 rate	𝜈! 	and	 the	 X-axis	 is	 nutrient	
concentration	 𝑛 .	Dotted	lines	indicate	the	specific	affinity	𝑎!! 	and	the	upper	(diffusion)	limit	on	the	specific	affinity	𝑎!!"# .	Dashed	lines	
indicate	 the	 maximal	 saturated	 uptake	 rate	𝑉!"# .	 The	 Michaelis	 constant	𝐾! ,! 	is	 the	 nutrient	 concentration	 at	 which	𝜈! = 1 2𝑉!"# .	
Equations	show	the	relationships	between	𝜈! ,	𝑎!! ,	𝑉!"# 	and	𝐾! ,! ,	 and	between	𝜈! ,	𝜇	and	𝑄! .	For	a	 fixed	nutrient	affinity,	cells	can	 lower	
their	minimal	subsistence	nutrient	concentration	by	lowering	their	required	nutrient	flux	𝜈! 	(blue	arrows).	Cells	can	increase	𝜈! 	at	any	
nutrient	 concentration	 by	 increasing	𝑎!! 	(red	 arrows),	 which	 is	 achieved	 by	 increasing	𝑉!"# 	and/or	 decreasing	𝐾! ,! 	(green	 arrows),	
providing	a	second	route	to	lowering	the	minimal	subsistence	nutrient	concentration.		

1. Button	DK	(1991).	Biochemical	basis	for	whole-cell	uptake	kinetics:	specific	affinity,	oligotrophic	capacity,	and	the	meaning	of	the	
Michaelis	constant.	Appl	Environ	Microbiol	57(7):2033-2038	
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Figure	 S4.	Details	of	 the	changes	 in	 the	core	metabolism	of	SAR11	over	 the	course	of	 its	evolution.	Key	genes	are	gained	and	 lost	as	
indicated	by	the	blue	and	yellow	lines	(Table	S2).	Red	dots	indicate	putative	redox	outlets	that	excrete	malate	and	citrate	or	isocitrate,	
and	blue	dots	 indicate	putative	uptake	pathways	 for	glycolate	and	pyruvate.	As	 in	Prochlorococcus	we	suspect	 that	citrate	rather	 than	
isocitrate	 is	excreted	because	aconitase	doubles	as	the	iron-regulatory	protein	[1]	(Fig.	S1).	Enzyme	names	of	numbered	reactions	are	
shown	in	Table	S2	and	Figure	S5.	
1. Pantopoulos	K,	Hentze	MW	(1995)	Rapid	responses	to	oxidative	stress	mediated	by	iron	regulatory	protein.	EMBO	J	14(12):2917.	
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Figure	S5.	Genomic	evolution	of	transport	pathways	in	SAR11.	Chromosomal	location	of	key	metabolic	genes	and	ABC	transporters	are	
shown	along	the	Prochlorococcus	phylogeny.	In	some	plots	SAR11	group	V	was	excluded	because	it	lacks	the	relevant	metabolic	genes	
(Table	S2).	Color-coded	names	of	genes	are	shown	below	each	plot,	and	gene	numbers	are	as	in	Fig.	S2.	Here	a	variety	of	transporters	are	
involved.	The	drug/metabolite		(DME)	transporter	family	(pyruvate	pathway)	is	implicated	in	both	export	[1]	and	uptake	[2],	and	in	
shuttling	electrons	from	the	cytoplasm	to	the	periplasm	under	oxidate	stress	[3,4].	Major	Facilitator	Superfamily	(MFS)	uptake	
transporters	and	Tripartite	ATP-independent	periplasmic	(TRAP)	uptake	transporters	(glycolate	pathway)	both	depend	on	proton	
motive	force	rather	than	ATP-hydrolysis	to	drive	transport	[5,6].	The	SecA	transporter	is	part	of	the	Sec	protein	translocation	system	[7],	
which	in	E.	coli	contains	a	plug	that	prevents	transfer	of	small	metabolites	[8],	but	in	eukaryotes	it	is	permeable	to	them	[9-11].	We	also	
observe	an	ABC	transporter	exclusive	to	the	IA	clade	(malate	pathway).		

1. Jack	DL,	Yang	NM,	Saier	MH	(2001).	The	drug/metabolite	transporter	superfamily.	Eur	J	Biochem	268(13):3620-3639	
2. Tucker	AM,	Winkler	HH,	Driskell	LO,	Wood	DO	(2003).	S-Adenosylmethionine	transport	in	Rickettsia	prowazekii.	J	Bacteriol	

185(10):3031-3035.	
3. Ohtsu	I	et	al.	(2010)	The	L-cysteine/L-cystine	shuttle	system	provides	reducing	equivalents	to	the	periplasm	in	Escherichia	coli.	J	

Biol	Chem	285(23):17479-17487.	
4. Ohtsu	I	et	al.	(2015)	Uptake	of	L-cystine	via	an	ABC	transporter	contributes	defense	of	oxidative	stress	in	the	L-cystine	export-

dependent	manner	in	Escherichia	coli.	PLOS	ONE	10(4):e0120619.	
5. Pao	SS,	Paulsen	IT,	Saier	MH	(1998)	Major	facilitator	superfamily.	Microbiol	Mol	Biol	Rev	62(1):1-34.	
6. Kelly	DJ,	Thomas	GH	(2001).	The	tripartite	ATP-independent	periplasmic	(TRAP)	transporters	of	bacteria	and	archaea.	FEMS	

Microbiol	Rev	25(4):405-424.	
7. Driessen	AJ,	Nouwen	N	(2008.	Protein	translocation	across	the	bacterial	cytoplasmic	membrane.	Annu	Rev	Biochem	77:643-667.	
8. Park	E,	Rapoport	TA	(2011)	Preserving	the	membrane	barrier	for	small	molecules	during	bacterial	protein	translocation.	Nature	

473(7346):239-242.	
9. Heritage	D,	Wonderlin	WF	(2001)	Translocon	pores	in	the	endoplasmic	reticulum	are	permeable	to	a	neutral,	polar	molecule.	J	Biol	

Chem	276(25):22655-22662.	
10. Roy	A,	Wonderlin	WF	(2003)	The	permeability	of	the	endoplasmic	reticulum	is	dynamically	coupled	to	protein	synthesis.	J	Biol	

Chem	278(7):4397-4403.	
11. Le	Gall	S,	Neuhof	A,	Rapoport	TA	(2004).	The	endoplasmic	reticulum	membrane	is	permeable	to	small	molecules.	Mol	Biol	Cell	

15(2):447-455.	
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SI	Tables	
	
Table	S1.	Distribution	of	core	metabolic	genes	across	cyanobacteria	highlights	the	remodeling	of	the	metabolic	
core	(Fig.	S1	&	Fig.	3	in	the	main	text)	during	the	evolution	of	marine	picocyanobacteria	as	they	diverged	from	
their	ancestors	
	
	 	 	 Reaction/enzyme*	

(genomic	abundance)	
	 	 	 	 	 	

Clade	 Number	
of	

Genomes	

	 1	 2	 4	 5	 6	 7	 8	 9	 10/15a	 11	 12	 13	 14	 18	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Cyanobacteria	 56	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

All	other	groups	 53	 	 12	 44	 53	 53	 0	 52b	 43	 51	 52	 48	 34	 53	 23	 17	

	Synechococcus	
			elongatus	

2	 	 0	 2	 2	 2	 0	 0	 0	 0	 0	 2	 0	 2	 0	 2	

Cyanobium	
		gracile		

1	 	 0	 0	 1	 1	 1	 0	 0	 0	 0	 1	 1	 1	 0	 1	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Marine	
Synechococcus	

15	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		Sub-cluster	5.2	 3	 	 0	 0	 3	 2	 3	 1b	 0	 0	 2	 3	 3	 3	 3	 1	

		Sub-cluster	5.3	 1	 	 0	 0	 0	 0	 1	 0	 0	 1	 0	 0	 1	 1	 1	 1	

		Sub-cluster	5.1B	 5	 	 0	 0	 0	 0	 5	 0	 0	 1	 0	 3	 5	 5	 4	 5	

		Sub-cluster	5.1A	 6	 	 3	 0	 0	 0	 6	 4b	 0	 1	 1	 2	 6	 6	 6	 1	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Prochlorococcus	 41	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

		LLIV	 5	 	 0	 0	 0	 0	 5	 5b	 0	 0	 0	 0	 0	 5	 5c	 0	

		LLII-III	 10	 	 0	 0	 0	 0	 10	 6b	 0	 0	 0	 0	 0	 0	 10c	 0	

		LLI	 4	 	 4	 0	 0	 0	 4	 0	 0	 0	 0	 0	 0	 0	 4c	 0	

		HLI	 3	 	 2	 0	 0	 0	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	

		HLII	 19	 	 19	 0	 0	 0	 19	 1b	 0	 0	 0	 0	 0	 0	 0	 0	

*Enzyme	names	(see	Fig.	S1):	1	–	Plastoquinol	Terminal	Oxidase	(PTOX),	2	–	6-phosphofructokinase,	4	–	phosphoenolpyruvate	
synthase,	5	–	malic	enzyme,	6	–	malate:quinone	oxidoreductase	(MQO),	7	–	succinate	dehydrogenase	(A,B,C	subunits),	8	–	
succinyl-CoA	synthetase,	9	–	succinate-semialdehyde	dehydrogenase,	10	–	2-oxoglutarate	decarboxylase,	11	–	acetate	kinase,	
12	–	acetylphosphatase,	13	–	2-glycolate	oxidase	(D,E,F	subunits),	14	–	tartronate	semialdehyde	reductase,	15	–	glyoxylate	
carboligase,	18	–	catalase	(KatG)	
Notes:	a	During	our	analysis	we	realized	that	previous	experimental	studies	on	the	TCA	cycle	and	photorespiration	in	
cyanobacteria	implicated	the	same	gene	as	catalyzing	reactions	10	&	15	[1,2],	suggesting	that	both	functions	are	performed	by	
a	promiscuous	enzyme.	b	It	has	previously	been	noted	that	in	marine	picocyanobacteria	carrying	this	3-subunit	enzyme	it	is	a	
homologue	acquired	from	proteobacteria,	that	potentially	catalyzes	the	reaction	in	the	opposite	direction	[3,4].	c	The	presence	
of	this	gene	in	many	strains	lacking	the	gene	for	reaction	15,	as	well	as	its	absence	in	freshwater	picocyanobacteria,	suggests	
loss	prior	to	reacquisition	and	involvement	in	a	different	function	in	marine	picocyanobacteria.	
	
1. Zhang	S,	Bryant	DA	(2011)	The	tricarboxylic	acid	cycle	in	cyanobacteria.	Science	334(6062):1551-1553.	
2. Eisenhut	M	(2008)	The	photorespiratory	glycolate	metabolism	is	essential	for	cyanobacteria	and	might	have	been	

conveyed	endosymbiontically	to	plants.	Proc	Natl	Acad	Sci	USA	105(44):17199-17204.	
3. Kettler	GC	et	al.	(2007)	Patterns	and	implications	of	gene	gain	and	loss	in	the	evolution	of	Prochlorococcus.	PLoS	

Genet	3(12):e231.	
4. Dufresne	A	et	al.	(2003)	Genome	sequence	of	the	cyanobacterium	Prochlorococcus	marinus	SS120,	a	nearly	minimal	

oxyphototrophic	genome.	Proc	Natl	Acad	Sci	USA	100(17):10020-10025.	
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Table	S2.	Distribution	of	core	metabolic	genes	across	SAR11	sub-groups	highlights	the	remodeling	of	
the	metabolic	core	(Fig.	S4	&	Fig.	5	in	the	main	text)	during	the	evolution	of	the	groups	dominating	the	
oligotrophic	surface	oceans	as	they	diverged	from	their	ancestors	
	

	 	 	 Reaction/enzyme*	
(genomic	abundance)	

	 	 	 	 	 	 	 	 	

SAR11	
Sub-group	

Number	of	
Genomes	

	 1	 2	 3	 4	 5	 6	 8	 9	 10	 11	 12	 13	 14	 15	 16	 18	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
V	 1	 	 1	 1	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 1	

III	 2	 	 0	 0	 0	 2	 2	 2	 2	 2	 0	 0	 0	 0	 0	 0	 1	 2	

II	 1	 	 1	 1	 0	 0	 1	 1	 1	 1	 0	 0	 0	 0	 0	 0	 1	 1	

IA.1/IA.2	 8	 	 0	 0	 0	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 8	 0	

IA.3	 4	 	 0	 0	 0	 4	 4	 4	 4	 0	 4	 0	 0	 0	 0	 0	 4	 3	

*Enzyme	names	(see	Fig.	S4):	1	–	6-phosphofructokinase,	2	–	pyruvate	kinase,	3	–	pyruvate	carboxylase,	4	–	
phosphoenolpyruvate	carboxylase,	5	–	phosphoenolpyruvate	synthase,	6	–	malic	enzyme,	8	–	malate	synthase,	9	–	glycolate	
oxidase,	10	–	isocitrate	lyase,	11a	–	glucose	dehydrogenase,	12a	–	gluconolactonase,	13a	-	repressor,	ORF,	kinase	(ORK),	14a	–	6-
phosphogluconate	dehydratase,	15a	–	glucose/ribitol	dehydrogenase,	16a	–	fumarylacetoacetate	hydrolase,	18	–	catalase	
(KatG).	
Notes:	a	Genes	postulated	to	be	involved	in	an	Entner-Doudoroff	glycolytic	variant	pathway	[1].	
	
1. Schwalbach	M.S,	Tripp	HJ,	Steindler	L,	Smith	DP,	Giovannoni	SJ	(2010)	The	presence	of	the	glycolysis	operon	in	

SAR11	genomes	is	positively	correlated	with	ocean	productivity.	Environ	Microbiol	12(2):490-500.	
	


