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[11 We present laboratory experiments designed to quantify the stability and energy
budget of buoyancy-driven iceberg capsize. Box-shaped icebergs were constructed out of
low-density plastic, hydrostatically placed in an acrylic water tank containing freshwater of
uniform density, and allowed (or forced, if necessary) to capsize. The maximum kinetic
energy (translational plus rotational) of the icebergs was ~15% of the total energy released
during capsize, and radiated surface wave energy was ~1% of the total energy released.
The remaining energy was directly transferred into the water via hydrodynamic coupling,
viscous drag, and turbulence. The dependence of iceberg capsize instability on iceberg
aspect ratio implied by the tank experiments was found to closely agree with
analytical predictions based on a simple, hydrostatic treatment of iceberg capsize. This
analytical treatment, along with the high Reynolds numbers for the experiments (and
considerably higher values for capsizing icebergs in nature), indicates that turbulence is an
important mechanism of energy dissipation during iceberg capsize and can contribute a
potentially important source of mixing in the stratified ocean proximal to marine ice

margins.
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1. Introduction

[2] Iceberg capsize liberates a large amount of gravita-
tional potential energy into the ocean over a relatively short
period of time [MacAyeal et al., 2011; Levermann, 2011].
This energy has multiple impacts, including (1) causing
horizontal translation, vertical bobbing, and rocking of the
iceberg and any adjacent sea ice and icebergs [MacAyeal
et al., 2003; Amundson et al., 2010]; (2) generating a wide
spectrum of ocean surface gravity waves, including meter-
scale short period (<60 s) and several centimeter—scale long-
period (100s of s) waves [Amundson et al., 2008, 2010;
Nettles et al., 2008; MacAyeal et al., 2009]; (3) stimulating
calving or iceberg fragmentation through ice-ice contact
or wave-driven ice shelf flexure [MacAyeal et al., 2009];
(4) turbulently mixing stratified proglacial waters, thereby
affecting ocean heat flux into and within a fjord (which
depends on stratification [see Motyka et al., 2003; Straneo
et al., 2010]); (5) generating unique seismic signals when
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the icebergs come into contact with the glacier terminus
[Tsai et al., 2008]; and (6) dissipating as heat into the water.
In addition, the geometry and gravitational stability of an
iceberg determines both its sensitivity to capsize and the
total amount of potential energy released during capsize
[MacAyeal et al., 2011]. Iceberg geometry may therefore be
an important parameter for the observed rapid (hours to days)
disintegration of Antarctic ice shelves [MacAyeal et al.,
2003]. Moreover, the sizable tsunamic waves generated by
iceberg capsize may contribute to the violent and rapid nature
of these large-scale collapse events [MacAyeal et al., 2011].

[3] In its simplest form, the energy budget of a capsizing
iceberg can be expressed as

— AU(t) = AKi(t) + AE, () + AE (1) + AE, (1) + AE,(2),
(1)

where AU is the change in potential energy, K is the kinetic
energy of the iceberg and any adjacent sea ice and icebergs
(referred to as ice mélange), E,, and F; are the energy of
ocean waves and seismic waves, E,, is energy that is con-
sumed by vertical mixing of the water column (dense parcels
move upward), E), is heat, and ¢ is time. The expression is
explicitly written as a function of time to allow for the fact
that kinetic energy and wave energy ultimately ends up as
heat. The relative importance of (and relationships between)
the energy terms in equation (1) is unknown due to inherent
dangers and difficulties of instrumenting remote, ice-choked
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Figure 1. (top) Diagram of the laboratory setup. (bottom)
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fjords. Such knowledge is desirable for two reasons. First,
icebergs that capsize while calving into the ocean contain
information (in the form of ocean and seismic waves) that can
be used to investigate the processes controlling calving.
Second, some processes that affect calving rates (ocean heat
flux, ice mélange strength, and ice shelf flexure) may be
influenced by the energy released during calving and its
immediate aftereffects, i.e., iceberg capsize. It is worth noting
some other forms of energy not considered in equation (1),
such as elastic energy released by the fracturing of stressed
ice, as well as the potential energy gained by the “rafting” of
one piece of ice melange atop another. We assume these
forms of energy are insignificant, and will ignore them in our
analysis.

[4] As a first step toward quantifying the capsize energy
budget, we present a laboratory investigation into the capsize
dynamics of single icebergs starting from a state of rest that
are in an ‘open ocean’ environment. Although many icebergs
capsize in close proximity to the calving terminus and other
icebergs, and may do so simultaneously with detachment
from the sourceterminus, we began our laboratory investi-
gation with the most simple and tractable end-member: the
isolated iceberg in open water. The laboratory apparatus
involved synthetic, box-shaped “icebergs” placed hydrostat-
ically into a transparent aquarium tank containing fresh
water. The icebergs were allowed (or forced, depending on
their aspect ratio) to capsize; the icebergs’ motion and coin-
cident surface gravity waves were recorded with a digital
video camera. In this study, our primary motivations were to
(1) quantify iceberg stability conditions, (2) quantify the
amount and rate of potential energy dissipation via viscous
and turbulent motions in the water caused by capsize, and
(3) place a bound on the maximum amplitude of and amount
of energy contained in surface gravity waves generated by
capsizing icebergs. Subsequent studies will consider iceberg
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capsize in stratified water bodies and iceberg-iceberg inter-
actions during calving.

2. Experimental Methods

2.1.

[5] The laboratory model “fjord” consisted of an optically
clear acrylic aquarium tank that is 244 cm long, 30 cm wide,
and 30 cm tall (Figure 1), and has walls that are 1.3 cm thick.
The tank was filled with fresh tap water at room temperature
of density p,, = 997 kg m . The depth of the water, D, was
varied from 11.4 to 24.3 cm. The icebergs used in the
experiments were machined out of low-density polyethylene
plastic that had a density of p; = 920 + 1 kg m—>, which was
calculated by measuring the mass and dimensions of the
icebergs. For all icebergs the precapsize height, H, and
length parallel to the axis of rotation during capsize, L, were
held constant at 10.3 cm and 26.7 cm, respectively. The
length L was chosen to be slightly shorter than the transverse
width of the tank (30 cm) in order to minimize contact
friction with the tank walls due to small rotations of the
icebergs in the x-y plane. The width of the icebergs, W, was
varied from 2.5-10.2 cm, so that the aspect ratio € = W/H
varied from approximately 0.25 to 1.0.

[6] In order to measure the height of the waves produced
by a capsizing iceberg, a small, spherical, closed cell styro-
foam buoy was placed approximately 25 cm from the ice-
berg at the beginning of each run. This distance is
sufficiently close to the capsize event so that waves reflected
off the walls of the tank do not affect our wave amplitude
measurements. Due to the very low density of the styrofoam,
the buoy was well coupled to the water surface and thus
measured the height of the water’s surface at that location as
a function of 7. The experiments were recorded with a Casio
EX-FH20 video camera, which was set to record 30 frames
per second. The camera resolution was typically 16 pixels
cm ™', although we increased the resolution to 93 pixels
ecm ™' (by zooming in) to measure buoy displacements.

[7] In order to track the positions and angular orientations
of the icebergs, black sticker dots were placed in each corner
of the rectangular face of the icebergs (Figure 1). The posi-
tion of each dot was located in each frame of the movie
using custom feature-tracking software written in Mathe-
matica (Wolfram Research). Once the positions of the dots
were known in every movie frame, the center of mass of the
iceberg was calculated as the mean position of the four dots,
and the angular orientation was calculated by measuring the
vector angle between the vertical (gravitational) direction
and the direction of the iceberg parallel to the height H. All
angles reported here are measured between the H axis and
the vertical, which ranges from —90° to 90°. Although the
camera was leveled before each video session, small tilts
were still possible within our measurement accuracy. To
provide a good measurement of the vertical direction in each
video, we used the water level as a perpendicular plane to the
vertical. The water level line was extracted from the first
frame of each video, fitted to a linear model z = (tan 6,,)
x + b, and the resulting angle 6,, was subtracted from all
other angles measured in the video.

Laboratory Setting
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2.2. Dynamic and Geometric Similarity

[8] As with any laboratory model of geological phenom-
ena, a discussion of dynamic similitude is warranted [e.g.,
Hubbert, 1937; Hughes, 1993]. Our iceberg capsize experi-
ments are defined by four dimensionless numbers. The first
two are the aspect ratio, £ = W/H, and the density ratio, p;/p,,,
where p; and p,, are the densities of the icebergs (plastic or
ice) and the water. For more complicated iceberg geometries
a single parameter such as the aspect ratio will not suffice.
Many freshly calved icebergs are roughly box shaped
(especially those involving full glacier thickness fracture
[e.g., Amundson et al., 2008; Scambos et al., 2009; Walter
et al., 2010]), which gives support for the idealized geom-
etries considered here. In the experiments the aspect ratio is
varied so as to span a range of observed aspect ratios, and
the density ratio differs from field observations by about
3%. We also only consider floating icebergs, so that capsize
is not affected by the corners of the iceberg touching the
ocean floor. In this regime the main role of water depth D
will be to affect the speed of gravity waves in the water.

[9] For our modest-sized laboratory experiments, it is
relevant to consider whether surface tension forces could be
important for the iceberg dynamics. These effects can be
addressed by inspection of the dispersion relation for surface
waves in the presence of gravity and surface tension [Lamb,
1932]:

W= (gk + ik3)tanh(0k), 2)

W

where w is the angular frequency, £k = 27/ is the wave
number, )\ is the wavelength, and ~y is the surface tension.
For a depth D =0.15 m and a wavelength A = H = 0.1 m, the
period of the wave is = 0.25 seconds. This differs by only
~1% from the case where v = 0. Thus, we conclude that for
the wavelength and period of waves observed in our labo-
ratory model, surface tension should be only a minor effect,
and will be ignored in any further analysis.

[10] The other two dimensionless numbers defining the
experiments are the Froude (Fr) and Reynolds (Re) numbers,
which are the most important numbers for similitude in an
overwhelming majority of coastal hydrodynamic phenomena
[Hughes, 1993]. The Froude number describes how effi-
ciently the iceberg can act as a source of gravitational waves
and, is given by the ratio of the characteristic capsize
velocity, V., to the gravitational wave speed in water:
Fr = V.up/Viave. The Reynolds number determines whether
the fluid flow is turbulent or laminar and is given by a ratio of
the inertial to viscous forces during capsize: Re = (HV .qpp.)/
1, where 1~ 1.0 mPa - s is the viscosity of water.

[11] We define V,,, by noting that the kinetic energy of a
capsizing iceberg is limited by the total amount of potential
energy released during capsize, E,,. If we assume that this
kinetic energy is in the form of translational motion only,
then

2Eca
Veap = [ e, ©)

where m = p,eH’L is the iceberg’s mass. This is simply an
upper bound on the translational velocity of the iceberg, and
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the actual characteristic translational velocities will be a
fraction of V,, due to energy dissipation into the water. (An
alternative estimate of V,, based on the kinetic energy of
rotational motion is more complicated and yields a result
that is comparable to the estimate associated with transla-
tional motion.) For the idealized iceberg geometries con-

sidered here, E.,, is given by

ap

1 .
By = gptie(1 = o)1= 1), @

where g is gravitational acceleration [see MacAyeal et al.,
2011]. Inserting equation (4) into equation (3) yields

Vi = ﬂl —p%)gﬂu —e). (5)

[12] To estimate the gravitational wave speed, V. 410, WE
take advantage of the dispersion relation for gravitational
surface waves in the absence of surface tension and the
definition of group velocity. The dispersion relation is given
by setting v = 0 in equation (2)

«? = gk tanh(Dk), (6)

We expect the wavelength of the generated waves to be of
similar length to the iceberg height, so that A\ = H. Further-
more, the water depth must exceed the initial iceberg height,
such that D = BH where (3 > 1. Inserting these relations into
equation (6) gives

W? = gk tanh(278) = gk. (7)

Noting that the group velocity is given by V.. = Ow/0k, we

find that
_ |gH
unve ~ 8’/T . (8)

Finally, inserting equations (5) and (8) into the expressions
for the Froude and Reynolds numbers gives

Fr_\/s;w(l—p%)(l—s)7 (9)

and

P [gH?

Re =F,
¢ "uV 8w

(10)

[13] The Froude number is independent of iceberg height
and is a simple function of 2 nondimensional numbers: the
aspect ratio and the density ratio. As discussed above, the
aspect ratios of the synthetic icebergs were varied to cover
the range seen in field observations, whereas the density
ratio differed from that associated with glacier ice by about
3%. The difference in the density ratio results in a Froude
number that is ~10% larger in the experiments than in the
field. Additionally, equation (9) predicts that in both cases,
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Figure 2. Schematic diagrams of iceberg cross sections.
(a) Parameters needed for calculating an iceberg’s gravita-
tional potential energy. The contour used for the integral in
equation (15) is indicated by the thick black line. (b) Para-
meters used to calculate the center of mass and center of
buoyancy for an iceberg that is held in hydrostatic equilib-
rium (see section 3.1).

Fr=1; however, we will later show that the above treatment
overestimates the maximum kinetic energy, and therefore
velocity, of the iceberg. The key point, however, is that
Fr <1 for both the experiments and the field, and this
implies that radiation of energy as surface gravity waves will
have a relatively minor contribution to the energy budget in
both cases.
£14] The Reynolds number, on the other hand, depends on
. All other terms are roughly equlvalent between the lab
and the field. For an iceberg that is initially 1001000 m
thick, Re = 10® — 10'°. Such large Reynolds numbers indi-
cate that iceberg capsize is a highly turbulent process. The
Reynolds number of the experiments is Re =~ 2 x 10* or
4-6 orders of magnitude smaller than in the field. Fortu-
nately, the laboratory value for Re is sufficiently large that
turbulence should be a dominant mechanism of energy dis-
sipation, thus allowing us to compare our results to field
observations and to provide a reasonable estimate of the
capsizing iceberg energy budget. To be more specific, we
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note that turbulent drag forces on solid bodies have a qua-
dratic dependence on velocity:

Fy= %prAcvz, (11)
where v is the velocity, 4. is the cross-sectional reference
area, and C is the drag coefficient, which will depend on the
geometry of the object and surface roughness. If we use V.,
as the velocity and A7 as our area, we see that the drag force
F, oc K, so that F, scales with the mass of the iceberg, as
does gravitational forces. For turbulent flow, drag coeffi-
cients typically vary by less than an order of magnitude even
as the Reynolds number varies by many orders, so that the
motion of a large iceberg (H = 1 km) may be well modeled
in our laboratory experiments.

3. Iceberg Energetics

3.1.

[15] The gravitational potential energy of an iceberg, U
(equation (1)), can be expressed as the potential energy of
the submerged portion of the iceberg in a reduced gravity
environment plus the potential energy of the subaerial por-
tion ofthe iceberg, such that

)

where ( is the elevation of the center of mass, (; is the
elevation of the center of buoyancy, and 4 and A, are the
cross-sectional areas of the iceberg and the submerged
portion of the iceberg. All elevations are measured with
respect to the waterline. Here we have assumed that L > H;
thus the iceberg can only capsize in the x-z plane (as shown
in Figures 1 and 2). The last two terms on the right hand
side of equation (12) are equal to the area and center of
mass of the subaerial portion of the iceberg. Rearranging
equation (12) and noting that 4 = ¢H* for our idealized
icebergs gives

Gravitational Potential Energy

¢4 — GAs

U= g(pL - pw)LcsAS +gsz(A - A\)( A— A

U = gpLeH*¢ — gp, L{A; (13)

The center of buoyancy, after applying Green’s theorem, is
given by

1
Z2dx, (14)

Cs == 24, g
where z, is the vertical position of a submerged boundary
element of the iceberg and c indicates that a contour integral
is performed around that boundary. Inserting equation (14)
into equation (13), we find that

U = gpLeH*C+ 2 58Py f zydx.

c

(15)

[16] In this formulation, U = 0 if the iceberg disintegrates
into infinitesimally small pieces that float on the water sur-
face. The contour integral in equation (15) can be deter-
mined explicitly for rectangular icebergs having arbitrary
orientation, #, and elevation, (. However, the analytic
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Figure 3. (a) Calculated gravitational potential energy of
a plastic iceberg as it is hydrostatically rotated through
90°. The red curve (e = 0.25) is unstable to small pertur-
bations from an initial orientation of § = 0. For £ = 0.8,
the iceberg cannot spontaneously capsize from its initial
orientation because small rotations increase the potential
energy. (b) Potential energy difference from capsize (£,
equation (4)) and actual energy release (£,.;) in our experi-
ments. For ¢ > ¢, the iceberg must be rotated over an
energy barrier before it will capsize, so the energy released
E, . is greater than E,,,.

solution is lengthy and piecewise; we therefore choose to
calculate it numerically. We also note that equation (15)
yields the same total energy release during capsize, E,
(equation (4)), as was found by MacAyeal et al. [2011].

ap

3.2.

[17] One ramification of equation (15) is that rectangular
icebergs with aspect ratios larger than some critical value, &,
will not capsize unless an energy barrier is overcome by
some external agent. Furthermore, by investigating the
potential energy curves of icebergs with various aspect ratios
(Figure 3a), it becomes evident that ¢, < 1. In other words,
an iceberg can be narrower than it is tall yet still not be
capable of spontaneously capsizing.

[18] The value of ¢, can be determined by placing an ice-
berg in hydrostatic equilibrium and investigating the change
in torque on the iceberg, which is given by 7 = —0U/00, as
the iceberg is rotated away from vertical. For small angular
rotations (f << 1°) the center of rotation is assumed to lie on

Iceberg Capsize Stability Analysis
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the waterline (z = 0), and thus the submerged area of the
iceberg is

A, = el P

16
Pw (16)

This assumption allows us to simplify equation (13) to

U = goleH(( ~ ). (17)

Thus the torque on an iceberg due to buoyancy is given by

r = gpleH’ 2 (G Q). (18)
Due to the idealized geometry used here, ( and (; can be
determined explicitly (for small ) through investigation of
Figure 2. Since the iceberg is held in hydrostatic equilibrium
we require that

Ay = (pi/ py)eH’. (19)
Equation (19) allows us to determine the lengths of the sub-
merged portion of the iceberg (Figure 2b), from which it
follows that the vertical elevation of the iceberg’s center of

mass is
|
(= ch0s€<& - —).
Py 2

w

(20)

We use geometric decomposition to calculate the center of
buoyancy, such that

_ 11 + (As

G =R, @

where (; and A4, are the center of mass and area of the small
triangle in Figure 2b, and (, and A4, are the center of mass and
area of the rectangle located immediately below the triangle.
The area and center of mass of the triangle are given by

A =

(eH)*tand), (22)

N —

and
1 .
¢ = —gsHsm@. (23)

The area and center of mass of the rectangle are given by

Ay = eH? <& - %stané) , (24)
and
H o1
G = ficose(;:—’+§€tan0). (25)

Inserting equations (19) and (22)—(25) into equation (21)

gives
1p, . |€ A
== P sech L) 2 ot . 26
¢ 30 Lzsec +<(pw 1 | cos (26)
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Setting equation (18) equal to zero, inserting the equations
for ¢ and (, (equations (20) and (26)), solving for ¢, and

letting 6—0 gives
e — 6&(1 _&),
p\V pM}

which is in agreement with the expression derived by
MacAyeal et al. [2003]. For icebergs in seawater, €. = 0.75,
and for the plastic blocks and fresh water used in our
experiments, &. ~ 0.66. For £ > ¢, icebergs must be rotated
to a sufficient angle so that they will capsize. We define E,.;
as the amount of energy actually released in the capsize
(Figure 3b). When ¢ < ¢, then E,,; = E,,, and the icebergs
will spontaneously capsize at § = 0.

[19] From equation (18) it is clear that the torque exerted
on an iceberg depends on the iceberg’s aspect ratio. For
small rotations from vertical, the torque achieves a maxi-
mum value at € = ¢, [see Amundson et al., 2010, Figure 9],
which can be evaluated analytically by setting 07/0¢ = 0,
solving for &, and letting #—0. This gives

(27)

Ee
N
Icebergs with € = ¢, can exert the largest forces on adjacent
ice blocks, at least during the initial phases of capsize, and
thus may play an important role in initiating large-scale
calving events by causing extension of a proglacial ice
mélange or highly fractured ice shelf. (Note that the analytic
solutions for €, and ¢, presented here are in perfect agree-

ment with the values numerically calculated by Amundson
et al. [2010].)

€ =

(28)

3.3. Oscillation Frequencies

[20] The equilibrium hydrostatic position of a rectangular
iceberg of height H and width ¢H is

1 p
w=i(57)

0oy = 0.

(29)

By comparing observed oscillations around this equilibrium
with oscillation frequencies predicted from hydrostatic
assumptions, we can assess the impact that hydrodynamic
forces have on the dynamics of iceberg capsize. The oscil-
lation frequencies can be predicted from Newton’s equations
of motion [see also Schwerdtfeger, 1980] for the 3 degrees
of freedom (6, x, and z):

. oU S
10 = —@—0— 10l 51gn(9)

ou
my = — Z + v, lxl"sign(z) (30)
X

mz = _u + v 1z1"sign(2),
0z
where I = pe(1 + €)H*L/12 is the iceberg’s moment of
inertia around its center of mass, vy, v,, and v, are simple
damping coefficients that represent energy dissipation due to
drag, and n determines whether energy is dissipated
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viscously (n = 1) or turbulently (» = 2). Since the potential
energy does not depend on x (equation (15)), then oU/0x =0
and the second of equations (30) can be ignored. Bobbing
and rocking frequencies are associated with motion in the z
and 6 directions, respectively. Assuming a hydrostatic, fric-
tionless fluid (vy = v, = v, = 0) and small rocking oscilla-
tions (so that we can again use equation (17)), we find that

1 .
.ﬁmb = T %pw
™\ ep,

Pl g(6p7 — 6pip, + €702
kT 2n H(l +e2)pp,

[21] The bobbing frequency agrees with the analysis of
Schwerdtfeger [1980]. However, Schwerdtfeger [1980]
incorrectly calculated the rocking frequency because the
analysis did not allow the iceberg’s center of mass to change
elevation during rocking. This is a reasonable simplification
for very wide icebergs (¢ > 10), but greatly overpredicts the
natural rocking frequency of narrower icebergs. As an
example, for a stable iceberg with £ = 0.75, Schwerdtfeger
[1980] predicts a rocking frequency 118% higher than our
value. Thus, icebergs that are barely stable are much more
sensitive to lower-frequency ocean swell than was previ-
ously thought. Also, as expected, equation (31) indicates that
the rocking period equals zero when €= £,, and is imaginary
when € < g, so that small perturbations will grow (leading to
capsize) instead of oscillate.

4. Experimental Results

4.1. Iceberg Stability

[22] We performed a series of iceberg stability experi-
ments to verify our derivation of iceberg potential energy
(equation (15)). The synthetic icebergs were hydrostatically
positioned with the height of the iceberg, H (see Figure 2),
oriented vertically. The icebergs were then allowed (or
forced) to capsize. The results are summarized in Figure 4.
All icebergs with small aspect ratios (¢ < £.) spontanecously
capsized; the potential energy curves of these icebergs
resemble the red curve (¢ =0.5) in Figure 3. Icebergs having
aspect ratios close to &, have peculiar potential energy curves
with shallow minima at < 15°; these icebergs are unstable at
0 = 0 but are able to rest at some other finite angle (see the
icebergs just to the right of the dashed line in Figure 4a). This
peculiarity is a consequence of the rectangular geometry
assumed here (e.g., the minimum disappears for rectangular
icebergs with sufficiently rounded corners). Thus we leave it
as a demonstration of the subtle relationship between iceberg
geometry and stability. Finally, for larger values of ¢, the
icebergs had to be rotated (by slowly pulling on the icebergs
with a thin piece of fishing wire) over a finite energy barrier
before they would capsize (see the blue curve, for which
£ =0.8, in Figure 3). The results from stability experiments
are in excellent agreement with our analytical derivations of
iceberg stability, and thus support the derivation of iceberg
potential energy presented above.
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Figure 4. Results from iceberg stability analysis. (a) All
plastic icebergs used in the experiment placed in order of
increasing €. When ¢ < g, the icebergs are unstable and will
spontaneously capsize. In the small area around e, they are
stable at a finite angle, and at larger values they are stable
in the upright (f = 0) orientation. (b) Stability diagram of
box-shaped icebergs used in the experiments. For § = 0,
the stable and unstable phases are separated by the critical
aspect ratio, &., given in equation (27). The dotted lines
show unstable potential energy maximums, and the solid
lines show stable potential energy minimums. The solid
and open data points are measurements of stable angles
(potential energy minima) and unstable equilibria (potential
energy maxima).

4.2. Iceberg Dynamics and Kinetic Energy

[23] Some of the potential energy released during iceberg
capsize is converted into translational and rotational kinetic
energy of the iceberg, which we can directly track in the
laboratory through image feature tracking. Typical mea-
surements of the orientation, 6, and horizontal and vertical
positions of the center of mass (£ and (, respectively) are
shown in Figure 5. As the iceberg rotates, 6 goes from zero
to 90° (the postcapsize equilibrium position). Iceberg cap-
size is followed by a short period of vertical and rotational
oscillations. The oscillations are rapidly damped due to
energy leaving the iceberg through wave generation and
viscous and turbulent dissipation.

[24] The kinetic energies associated with iceberg rotation,
KER, and horizontal and vertical translation, KEy and KE,,
are plotted in Figure 6a. The iceberg’s kinetic energy is
dominated by rotational energy, which peaks shortly before
the iceberg has rotated 90°. The most striking result from
these experiments is that only a small fraction of potential
energy released during iceberg capsize is converted into
iceberg kinetic energy (Figure 6b). The maximum kinetic
energy of the iceberg is ~15% of the energy it released
during capsize, and thus ~85% of the energy must be
immediately released into the water (i.e., during the initial
rotation of the iceberg from 6 = 0° to § = 90°).
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[25] The maximum power put into the water, Py,.,, com-
puted by taking the derivative of the total iceberg energy
(PE + KER + KE; + KEx) with respect to time, was found to
depend on ¢ (Figure 7a). The general shape of the curve is
likely due in large part to the total energy released during
capsize, E,,, which depends quadratically on ¢ and reaches
a maximum at € = 0.5 [MacAyeal et al., 2011] (see
equation (4)). Moreover, the power put into the water does
not appear to depend on water depth within our experimental
error. Note that the results from the stable region (¢ > ¢,) are
not as easily interpreted since the icebergs had to be slowly
rotated to overcome a potential energy barrier prior to cap-
sizing (see section 4.1). In Figure 7b, we show P, in a
dimensionless fashion scaled by the actual energy released
E,.; (see Figure 3b), and a timescale T,.;= H+/m/E,,. When
plotted in this way, a linear trend emerges which shows
that larger icebergs produce more power per unit potential
energy released.

[26] To explain this result, we note that a simple drag force
on a capsizing iceberg (equation (30)) should be of the form
Frag < p,-HLB", where the product H x L is the cross-
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N
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1
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1
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center-of-mass position (cm)

-1 0 1 2 3
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Figure 5. Rotation angle (#) and center of mass in the x
direction (§) and z direction (¢) of an &£ = 0.5 capsizing plas-
tic iceberg. All data are shown with ¢ = 0 corresponding to
the time that the iceberg first rotated to § = 90°. The horizon-
tal dotted lines indicate the capsized equilibrium angle and
vertical position. During the capsize process, ( increases
because this lowers the iceberg’s potential energy. The posi-
tion of & changes more slowly, indicating that after capsize
the iceberg translates due to momentum transfer to the water.
In this example the iceberg translates to the left, indicating
that there has been a transfer of momentum to the water in
the form of waves traveling to the right.
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Figure 6. Measured energy of an ¢ = 0.5 iceberg during
capsize. (a) Kinetic energies versus time. As the iceberg
rotates and the center of mass moves upward, the rotational
(KER) and z translational (KE) energy increases. The x
translational energy is quite small but can be a larger compo-
nent of the total kinetic energy for icebergs with smaller &.
The rotational kinetic energy is clearly dominant. (b) Total
kinetic energy and potential energy versus time. The maxi-
mum Kkinetic energy is roughly 15% of the total potential
energy released.

sectional area sweeping out the water as the iceberg rotates.
The gravitational capsizing force is proportional to the mass
m = p;eH*L, so for icebergs with larger values of ¢ (and thus
larger mass), the drag force has less of an effect on the
dynamics. This fact can also be deduced from Figure 7c,
which shows the maximum kinetic energy (rotational plus
translational) scaled by E,.;.. We see that for icebergs with
larger ¢, the maximum kinetic energy is a larger percentage
of the total available potential energy.

[27] The large amount of energy put into the water is
further illustrated by the horizontal motion of the icebergs
during and following capsize (Figure 7d). If the icebergs did
not transfer momentum to the water, their horizontal posi-
tions would remain fixed during capsize. Instead, we find
that the icebergs tend to accelerate horizontally in the
direction determined by the initial tilt of the upper surface.
Thus an iceberg that rotates clockwise will move to the right.
Icebergs with small values of ¢ translate horizontally the
fastest, indicating that they transfer momentum to the water
most efficiently.
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4.3. Tsunami Energy and Amplitude

[28] Discriminating between the 2 mechanisms of energy
delivered to the water (wave generation and dissipation) is
not as straightforward as calculating iceberg potential and
kinetic energies. We can estimate the surface wave energy,
however, by measuring wave amplitudes with a buoy and
assuming that the wavelength is approximately equal to
the iceberg’s height, H. Thus, the surface wave energy is
given by

By = gp.etA, (32)
where A4,, is the map view area of a surface wave (wave-
length times the width of the tank) and Az is the crest-to-
trough amplitude [Gill, 1982].

[20] We have made direct optical measurements of tsu-
nami wave amplitudes by tracking the vertical displacements
of a styrofoam buoy (Figure 8). The wave amplitude is a
function of € and, as expected, closely follows the maximum
power input into the water (see Figure 7a) with the largest
values occurring when € = 0.5. Moreover, our results are in
excellent agreement with the theoretical prediction that the
maximum amplitude of glaciogenic tsunamis is ~0.01H
[MacAyeal et al., 2011]; for our synthetic icebergs, this
corresponds to an amplitude of 1 mm.

[30] From equation (32), we estimate that the energy of a
capsize-generated wave with an amplitude of 2 mm is
roughly 0.3 mJ. This accounts for a very small percentage of
the total energy released during capsize (£,,,; equation (4)),
which is 25 mJ for our synthetic icebergs when ¢ = 0.5.
Thus, we conclude that the majority of iceberg potential
energy is quickly dissipated during capsize, and may there-
fore be a source for considerable turbulent dissipation and
mixing.

5. Validation of Simplified Iceberg Capsize
Models and Implications for Ice Shelf Collapse

[31] Our laboratory experiments allow us to test whether
iceberg capsize can be adequately characterized without
accounting for hydrodynamics (i.e., the transfer of momen-
tum from the iceberg to the water). This approximation can
greatly reduce the complexity of ice shelf collapse models,
which are inherently computationally expensive due to the
thousands of iceberg collisions that must be modeled
[Guttenberg et al., 2011]. To test the hydrostatic capsize
approximation, we fit modeled iceberg capsize trajectories
(using equation (30)). The initial orientation and elevation of
the icebergs were specified from data, and vy and v, were
adjusted to minimize the error between the data and model
results. In this simplified model the force balance in the x
direction is 0 and therefore the second of equation (30) is
ignored. The start time of the minimization was taken as the
point at which the iceberg had rotated to 6 = 10°; the end
time was 3 s later. This was done to avoid fitting oscilla-
tions associated with (1) initial placement of the iceberg
and (2) waves reflecting off of the walls of the tank.

[32] The simplest choice of a drag force law would be
using # = 1 in equation (30). However, as Figure 9 illus-
trates, we have strong evidence for significant turbulent flow
in the water during the capsize of our laboratory icebergs.
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Figure 7. Observations of energy transfer to the water. Open and solid circles represent data taken at two
different water depths, D. The error bars represent the standard deviation of three different capsize events.
The boundary between the stable and unstable regimes is € = €. (a) Maximum power put into the water
(Pmax) during capsize as a function of €. (b) Py« scaled by E,.; and T, as defined in the text. Icebergs
with a larger ¢ achieve a relatively higher rate of energy dissipation. (c) Maximum kinetic energy of the
icebergs versus €. KE .., is able to reach higher percentages of the total available energy as ¢ is increased.
(d) Final translational velocity of the icebergs in the x direction after capsize. Icebergs with smaller values
of £ have a more asymmetric capsize process, resulting in better momentum transfer to the water and

subsequent horizontal iceberg motion.

Thus the minimization was done for both » = 1 (laminar
viscous dissipation) and » = 2 (turbulent dissipation). The
results of the minimization, which are shown in Figure 10,
have multiple implications. First, the model fits the data
quite well for both » = 1 and n = 2, although the misfit is
about 10% lower for the latter. This suggests that turbulence
is an important energy sink, as is expected from the esti-
mated Reynolds number (see section 2.2). Turbulence
should be even more important in the field, where capsizing
icebergs have Reynolds numbers that are orders of magni-
tude larger.

[33] Second, an important source of error in the mini-
mizations is that the frequency of iceberg oscillations in the
model is larger than observed. When ¢ = 0.5 the modeled
frequencies are ~5% too large, whereas when & = 0.25 the
frequencies are ~30% too large. We attribute these dis-
crepancies to the fact that the model does not transfer
momentum to the water, which is supported by the obser-
vation that icebergs with small values of ¢ tend to translate
horizontally during capsize (see section 4.2). Future simpli-
fied iceberg capsize models may require the use of “added
mass effects” to account for this momentum transfer
[Brennen, 1982].

[34] Finally, the rate at which icebergs capsize and expand
out into the ocean during an ice shelf collapse event
depends, in part, on the rate of energy dissipation into the
ocean due to viscous drag (or turbulence) [Guttenberg et al.,
2011]. The values of v, and vy found here (Figures 10c and
10d) are likely lower than encountered in the field, where

dissipation is expected to be highly turbulent. The Gutten-
berg model assumes that ice shelf collapse is not rate limited
by fracture propagation (i.e., prior to collapse the ice shelf
has already disaggregated into uncapsized icebergs). Thus,
when the laboratory-derived values of v, and vy are applied
to the Guttenberg model, we find that a maximum of 20%
of the icebergs in a fully disaggregated, large ice shelf
(producing 100 s of icebergs) can capsize during the first
8 h of a collapse event.

6. Possible Impacts of Energy Dissipation
on Fjord Properties

[35] Possibly the most important finding of this study is
that the majority of the energy released by a capsizing ice-
berg is rapidly dissipated into the water as the iceberg rotates
from 6 = 0° to 6 = 90°. Furthermore, much of the dissipation
is likely due to turbulence. In many cases, iceberg capsize is
the result of a calving event when the newly formed iceberg
is gravitationally unstable. Here we use our results to quan-
titatively assess the impact of calving events on fjord strati-
fication. Iceberg calving and capsize has implications for
fjord dynamics and stratification because (1) turbulence does
work against stratification and therefore affects heat trans-
port in fjords, which depends on stratification [see, e.g.,
Motyka et al., 2003; Straneo et al., 2010; Mortensen et al.,
2011] and (2) hydrodynamic dissipation increases the heat
content of the proglacial water, possibly influencing sub-
marine melt rates or sea ice growth.
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Figure 8. Measured amplitudes of waves generated by cap-
sizing, plastic icebergs. In all cases, the styrofoam wave
buoy was placed about 25 cm (a distance of 2.5H) away
from the iceberg’s center of mass. (a) Wave amplitude ver-
sus time for an € = 0.56 iceberg. The iceberg capsized at
t = 1.5 s. The small fluctuations in amplitude prior to and
after the event are associated with experimental noise and
disturbances associated with placement of the iceberg in
the tank. The tsunami begins with a small crest that is fol-
lowed by a large trough; the main wave crest arrives shortly
afterward. (b) Maximum wave amplitude versus &. Error
bars represent the small fluctuations in the water surface
prior to the wave arrival. Each point is the average of three
measurements.

[36] Field observations of calving-generated turbulence
are completely lacking, and thus we are unable to fully
quantify the impacts of calving-generated mixing and heat
generation on fjord dynamics and temperature. Moreover,
our laboratory model presently consists of freshwater of
uniform temperature, and so any energy lost to turbulence
will ultimately be converted to heat. We can, however,
provide a first assessment of these processes by using an
example from Jakobshavn Isbrae, Greenland (Figure 11a) to
consider the two end-members: all of the dissipated energy
is (1) consumed by vertical, adiabatic mixing of the water
column, or (2) converted into heat in the vicinity of the
glacier terminus. Icebergs at Jakobshavn Isbra are typically
1000 m tall, 500 m wide (perpendicular to axis of rotation),
and 1000 m wide (parallel to axis of rotation) (Figure 11b).
Throughout much of the summer, these icebergs are released
from a glacier terminus that is at or close to floatation. When
these icebergs capsize, the energy released is about 10'* J
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s
s

-

-
Figure 9. Video frames showing the capsize of an €= 0.5
plastic iceberg. The dark blue dye to the right of the berg
shows the pattern of flow and the development of a large
vortex indicative of turbulent flow. The dye and thus the

mixing flow extends far away from the right side of the ice-
berg. The time between the first and last frame is 12 s.
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(see equation (4)). Roughly 30 calving events of this size
occur each year [Amundson et al., 2008, 2010].

6.1. Case I: All of the Dissipated Energy Is Consumed
in Adiabatic Mixing

[37] Turbulent mixing changes the gravitational potential
energy of a water column by changing the column’s vertical
density profile. The change in potential energy of a column
per unit surface area due to mixing is

En= [ (u(2) = pu(e))ged (33)

where H,, is the total water depth, p,, and p,, are water den-
sity prior to and after mixing, and z is the upward pointing
vertical coordinate.

[38] Complete mixing of a column through adiabatic pro-
cesses produces a column with constant salinity, potential
density, and potential temperature. Using (1) data from
XCTD casts made in the fjord in July 2008 (Figures 11a and
11c—11e), which are assumed to be representative of the
entire fjord; (2) the equation of state of seawater [e.g., Gill,
1982]; (3) conservation of mass, salt, and thermal energy;
and (4) the requirement that the mixed column has constant
salinity, potential density, and potential temperature, we
estimate that the energy needed to achieve complete adia-
batic mixing of the water column is 9 x 10°J m 2. Although
this estimate is based on just a few profiles collected during a
short time interval, it does provide an order of magnitude
estimate of the energy needed for mixing.

[39] The energy dissipated during a single calving event, if
it went entirely into mixing, would be sufficient to mix about
100 km? of the fjord (by surface area). Only 5% of the
energy would be needed to entirely mix the innermost 1 km
of fjord (which is 5 km wide at the glacier terminus). Such

localized mixing may still be important because, proximal to
the terminus, it could impact the upwelling and outflow
of subglacial discharge [see Motyka et al., 2003; Rignot
et al., 2010; Straneo et al., 2011], and further down fjord,
it could modify the strength and structure of circulation
including outflow at subsurface levels [e.g., Mortensen
et al., 2011]. Since observations of fjord conditions imme-
diately adjacent to a glacier terminus are lacking, we would
only be able to speculate on how calving-generated mixing
might affect fjord circulation.

[40] Observations from Sermilik Fjord [Straneo et al.,
2011] provide some, albeit ambiguous, indication that
calving-generated turbulence is an important process in
tidewater glacier fjords. Their (limited) observations indicate
that Sermilik Fjord is most strongly stratified in winter,
when calving events are rare, and most weakly stratified in
summer, when calving events occur frequently. We thus
hypothesize that calving events strongly influence fjord
stratification on seasonal timescales.

6.2. Case II: All of the Dissipated Energy
Is Converted Into Heat

[41] As a result of turbulent mixing in the water column,
energy released by a capsizing iceberg will increase the heat
content of a fjord. If all of the energy released by a capsizing
iceberg is converted into heat, then the temperature of some
volume of water, V,,, will increase by

YT
Pw VWCP ’

(34)

where C, = 4000 Jkg~! °C™! is the specific heat capacity
[Gill, 1982] and AT is the change in water temperature.
From equation (34), we find that a typical calving iceberg at
Jakobshavn Isbre can, for example, increase the temperature
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Figure 11. (a) MODIS image of Jakobshavn Isbre indicat-
ing the terminus position, the position of XCTD casts made
in the fjord on 29 and 30 July 2008, and (b) the position and
look angle of the camera used to take the photo. Figure 11b
shows a typical calving iceberg, captured on 10 May 2008.
(c—e) Salinity, potential temperature, and in situ density pro-
files collected in the fjord. The dashed curve in Figure 11e is
the density profile that indicates perfect adiabatic mixing of
the water column (i.e., constant salinity, potential tempera-
ture, and potential density).

of 2.5 km® of water by 0.01°C. We suspect that such small
changes in water temperature will have little impact on
fjord dynamics.

[42] Heat generated by capsizing icebergs may also act as
a source for melting of sea ice, icebergs, and a glacier’s
terminus. Assuming that the ice being melted is already at its
melting point, the volume of ice that can be melted, V;, with
the heat generated by a single capsizing iceberg is

V= Ecap

R (35)
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where [r=3.34 x 10° Jkg~ ' is the latent heat of fusion for
ice [Paterson, 1994]. Thus, individual icebergs that calve
from Jakobshavn Isbre can produce, at most, enough heat to
melt 0.01 km® of ice. The ice flux through the glacier’s ter-
minus region (which is melted or calved into the ocean) is
approximately 46 km® yr—' [Rignot and Kanagaratnam,
2006]. Taking this as an upper bound for the calving flux,
we estimate that the heat generated by calving can currently
melt up to 0.92 km® of ice in a year. This source of heat is
small but not entirely insignificant. As an order of magnitude
comparison, we note that Motyka et al. [2011] estimated that
prior to its recent calving retreat the floating tongue of
Jakobshavn Isbree was experiencing submarine melt rates on
the order of 21 km® yr—'.

7. Conclusions

[43] The energy released by calving and capsizing ice-
bergs has implications for fjord stratification and dynamics,
ice shelf collapse and ice mélange dynamics, and generation
of ocean and seismic waves. The laboratory-scale study
presented here indicates that (1) the maximum kinetic energy
of a capsizing iceberg is about 15% of the total energy
released by the iceberg, (2) about 1% of the energy is radi-
ated away from the iceberg as ocean surface gravity waves,
(3) calving-generated ocean waves should have a maximum
amplitude that is approximately equal to 1% of the iceberg’s
initial thickness (as was predicted by MacAyeal et al.
[2011]), and, perhaps most importantly, (4) the majority of
the liberated energy is rapidly dissipated into the ocean
through viscous drag and/or turbulence.

[44] The amount of mixing that is caused by calving
events remains uncertain but is a unique and potentially
important process within fjords containing tidewater gla-
ciers. By disrupting fjord stratification, calving events may
affect heat transport and melting within a fjord. This heat
transport, in turn, can affect a glacier’s stability by melting
submarine portions of the terminus [Motyka et al., 2003]
and/or by influencing the strength of a coverage of sea ice or
ice mélange [Reeh et al., 2001; Amundson et al., 2010].
Further work involving field, laboratory, and modeling
studies is needed in order to determine both the amount of
mixing caused by calving icebergs and the amount of time it
takes a fjord to recover from a single calving event or a
seasonally modulated series of calving events.
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