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[1] The viscous constitutive relations of partially molten rocks developed here show that
an anisotropy in grain-scale melt distribution can lead to a strong anisotropy in the
viscosity of the solid framework. With anisotropic viscosity, a direct coupling between
shear and isotropic components of stress occurs, and hence, the role of shear deformation
in melt migration significantly increases. We demonstrate the significant effects of
viscous anisotropy on melt migration dynamics by solving the solid-liquid two-phase
dynamics for two simple cases. First, in rotary shear deformation, an anisotropy creates a
driving force for melt migration up stress gradients in the solid matrix, which does not
exist with isotropic viscosity. Second, in uniform simple shear deformation, melt
segregates spontaneously into low-angle bands due to anisotropic melt alignment, in close
agreement with experimental observations. Our results indicate that stress-induced melt
alignment at the grain scale drives further melt redistribution over distances much longer
than the grain scale. The development of such ‘‘multiscale anisotropy’’ is demonstrated by
‘‘forward’’ or ab initio approaches based on the equations of two-phase dynamics, in
which the viscous constitutive relation is based on observed microstructure and realistic
rheology. When applied to a simple approximation of flow in the mantle beneath ridge
and subduction zone, the anisotropic constitutive relation significantly affects melt
migration patterns.

Citation: Takei, Y., and B. K. Holtzman (2009), Viscous constitutive relations of solid-liquid composites in terms of grain boundary

contiguity: 3. Causes and consequences of viscous anisotropy, J. Geophys. Res., 114, B06207, doi:10.1029/2008JB005852.

1. Introduction

[2] It is well known that the Earth’s upper mantle
possesses significant elastic anisotropy. However, the pres-
ence of viscous anisotropy is not easily constrained and its
importance is not well understood. Previous studies on the
effects of viscous anisotropy on geodynamics showed that
viscous anisotropy can significantly affect patterns and
length scales of mantle convection and postglacial rebound
[Saito and Abe, 1984; Honda, 1986; Christensen, 1987; Lev
and Hager, 2008]. These studies attributed anisotropy
mostly to solid state rock fabrics and considered incom-
pressible fluid dynamics. Our concern in this paper is the
viscous anisotropy of partially molten rocks. One of the
important implications of the first of our companion papers
[Takei and Holtzman, 2009a] (hereinafter referred to as
TH1) is that an anisotropy in grain-scale melt distribution
can lead to a strong anisotropy in the viscosity of the solid
framework. The essential difference from previous studies is
that we consider the dynamics of solid-liquid two-phase

systems in which local compaction and decompaction of the
solid framework occur, coupled to liquid migration. In this
paper, we demonstrate the significant consequences of
viscous anisotropy on the dynamics of partially molten
rocks.
[3] Shear deformation of partially molten rocks is con-

sidered to play important roles in segregation of melt from
the mantle. These interactions have been studied over wide
length scales, ranging from plate boundary scale to labora-
tory sample scale. At the plate boundary scale, detailed
theoretical studies on the liquid pressure gradients induced
by mantle flow were performed for mid-ocean ridge and
subduction zone settings [Spiegelman and McKenzie, 1987;
Phipps Morgan, 1987]. In both settings, mantle shear
deformation drives horizontal migration and focusing of
melt toward the singular point in the flow field. This result
is important as a possible explanation for narrow zone of
volcanism and broad zone of melt production at mid-ocean
ridge. In the partially molten rock samples experimentally
deformed in simple shear, spontaneous segregation of melt
into low-angle bands was observed [Holtzman et al., 2003a,
2003b, 2005; Holtzman and Kohlstedt, 2007]. This result is
important as a possible mechanism for the development of
high-permeability pathways, which are required to explain
the rapid ascent of melt indicated from the significant
radioactive disequilibrium in young basalts [e.g., Kelemen
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et al., 1997; Spiegelman et al., 2001; Iwamori, 1994]. Such
rapid ascent cannot be explained by the low permeability of
an isotropic network of grain edge melt tubules which
develop under hydrostatic stress.
[4] In modeling the effects of shear deformation on melt

migration, viscous rheology of partially molten rocks plays
an essential role. In the focusing of melt driven by
mantle flow, a key parameter determining the intensity of
the focusing is the shear viscosity of the solid matrix.
Also, in the spontaneous segregation of melt into melt-rich
bands, porosity-weakening viscosity plays an important role
[Stevenson, 1989]. Although the observed low angle of the
bands cannot be explained by the simple model with
porosity-weakening viscosity [Spiegelman, 2003], a model
extended to nonlinear rheology can explain the low angle
due to the balance of porosity weakening and strain rate
weakening [Katz et al., 2006]. However, until now, the
effects of shear deformation have been explored only for
systems with isotropic viscosities. Although grain-scale
melt alignment, which causes large viscous anisotropy,
was observed simultaneously with the melt-rich networks
of channels [Holtzman and Kohlstedt, 2007], relations
between the two observations have not been explored.
[5] This study is the first attempt to investigate the effects

of matrix shear deformation on melt migration with aniso-
tropic viscosities. Because viscous anisotropy causes a
direct coupling between shear and isotropic components,
the roles of shear deformation in melt migration are signif-
icantly increased. We demonstrate the occurrence of melt
migration up stress gradients in the solid framework, which
does not occur in systems with isotropic viscosity, and also
the spontaneous segregation of melt into low-angle bands,
consistent with experimental observation. Our results show
that the viscous anisotropy resulted from the melt alignment
at the grain scale drives further melt redistribution over
distances greater than the grain scale. In other words,
development and consequences of ‘‘multiscale’’ structures
are predicted, in which the grain size and compaction length
provide two important reference scales.
[6] In sections 2–7, we first introduce the tensor repre-

sentation of anisotropic viscosity of solid-liquid two-phase
system (section 2). We present a simple 2-D microstructural
model and derive viscous constitutive relations as functions
of grain-scale contact geometry (section 3). Then, by
combining the anisotropic viscous constitutive relation with
mass and momentum conservation of the solid-liquid two-
phase system (section 4), we solve the melt migration under
a rotary shear deformation (section 5) and under a simple
shear deformation (section 6). To illustrate potential impli-
cations for geodynamics, we present approximate solutions
for melt migration in the mantle beneath mid-ocean ridges
and subduction zones (section 7). The approaches devel-
oped in this paper are ‘‘forward’’ or ab initio approaches
based on the equations of solid-liquid two-phase dynamics,
in which the viscous constitutive relations bridge micro-
scopic and macroscopic processes. These forward models
complement the inverse approaches discussed by TH1.

2. Tensor Representation of Anisotropic Viscosity

[7] We consider a solid-liquid two-phase system in which
the solid matrix deforms by grain boundary diffusion creep.

Anisotropy in matrix viscosity can be generally represented
in terms of the viscosity tensor Cijkl as

sS
ij � Pldij ¼ Cijkl _e

f
kl ð1Þ

or

sB
ij � Pldij ¼ CB

ijkl _e
f
kl; ð2Þ

where sij
S is solid stress (tension positive), Pl is liquid stress

(tension positive), sij
B is the bulk (or total) stress defined by

sB
ij ¼ 1� fð ÞsS

ij þ fPldij ð3Þ

with melt fraction f, and _eij
f represents framework strain rate

which is defined by the macroscopic (average) velocity field
of the solid phase, vS, as

_efij ¼
1

2

@vSi
@xj

þ
@vSj
@xi

 !
: ð4Þ

Even if the constituent materials are incompressible, the
volumetric component of the framework strain rate, _eii

f , can
be nonzero due to the occurrence of compaction/decom-
paction. Cijkl in equation (1) and Cijkl

B in equation (2) are
simply related by Cijkl

B = (1 � f)Cijkl.
[8] In the first of the companion papers (TH1), a theo-

retical framework to derive viscous constitutive relations of
partially molten rocks deforming within the regime of grain
boundary diffusion creep was developed on the basis of the
grain-scale model (contiguity model). In section 3, by
applying this theory to a 2-D grain model, the viscosity
tensor is derived as a function of grain-to-grain contact
geometry described by the contact function XC. Then, by
constraining the contact geometry with experimental obser-
vations, anisotropic viscosities of partially molten rocks are
predicted. Therefore, section 3 provides an important foun-
dation for the anisotropic viscosity used in sections 4–7.
However, readers who are mostly interested in the macro-
scopic consequences or phenomenological aspects of the
viscous anisotropy may leap to section 4 and refer to
section 3 as needed.

3. Viscosity Tensor in 2-D Based on Contiguity
Model

[9] We consider a solid-liquid composite system, in
which the contact state of each grain with neighboring
grains is described by a contact function XC defined on
the grain surface. XC takes a value of 1 on the contact
surface and 0 on the pore surface. For simplicity, we
consider a 2-D grain with 8 contact faces or patches (Figure 1);
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XC takes a value of 1 on the 8 contact patches placed at qk �
Qk � q � qk + Qk (k = 1, 2, .., 8) and 0 on the pore surface at
qk + Qk � q � qk+1 � Qk+1, where qk = kp/4 represents the
center of the kth contact patch and 2Qk represents the
patch size. A point symmetry, Q1 = Q5, Q2 = Q6, Q3 =
Q7, and Q4 = Q8, is assumed. Using the theory developed
by TH1, the viscous constitutive relation of the composite
can be derived in an analytical form as

sB
xx � Pl

� �
þ sB

yy � Pl
� �

2

sB
xx � Pl

� �
� sB

yy � Pl
� �

2

sB
xy

0
BBBBBBB@

1
CCCCCCCA

¼
x z2 z3
z2 hþ z1 0

z3 0 h� z1

0
B@

1
CA

�

_efxx þ _efyy
_efxx � _efyy
2 _efxy

0
BB@

1
CCA; ð5Þ

where x and h represent the generalized forms of bulk and
shear viscosities defined by

x ¼ 1� fð Þhcc
p

2

3

X4
k¼1

2Qkð Þ3

h ¼ 1� fð Þhcc
p

X4
k¼1

2Qk �
X4
k¼1

1

2Qk

sin2 2Qkð Þ
 !

;

8>>>><
>>>>:

ð6Þ

z1, z2, and z3 are anisotropy components defined by

z1 ¼
1� fð Þhcc

2p

�
sin 4Q1ð Þ � sin 4Q2ð Þ þ sin 4Q3ð Þ

� sin 4Q4ð Þ � 1

Q1

sin2 2Q1ð Þ þ 1

Q2

sin2 2Q2ð Þ

� 1

Q3

sin2 2Q3ð Þ þ 1

Q4

sin2 2Q4ð Þ
�
;

z2 ¼
1� fð Þhcc

p
4Q2 cos 2Q2ð Þ � 2 sin 2Q2ð Þð

� 4Q4 cos 2Q4ð Þ þ 2 sin 2Q4ð ÞÞ;

z3 ¼
1� fð Þhcc

p
�4Q1 cos 2Q1ð Þ þ 2 sin 2Q1ð Þð

þ 4Q3 cos 2Q3ð Þ � 2 sin 2Q3ð ÞÞ;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð7Þ

and hcc represents the Coble creep viscosity in two
dimensions, which is explicitly given by equation (36) of
TH1. The derivation is based on the calculation of the radial
component of traction fr on the surface of each grain under a
given macroscopic strain rate _eij

f and liquid stress Pl, where
tangential components of the traction are assumed to be zero
(TH1). For later use, the explicit form of fr is written here:
on the kth contact patch,

fr � Pl

2hcc
¼ � 2 _efxx þ _efyy

� �
q� qk �Qkð Þ q� qk þQkð Þ

þ _efxx � _efyy
� ��

cos 2qð Þ � cos 2qkð Þ cos 2Qkð Þ

þ q� qk
Qk

sin 2qkð Þ sin 2Qkð Þ
�
þ 2 _efxy

�
sin 2qð Þ

� sin 2qkð Þ cos 2Qkð Þ� q� qk
Qk

cos 2qkð Þ sin 2Qkð Þ
�
; ð8Þ

and on the pore surface, fr = Pl or fr � Pl = 0. (To derive
equations (5)–(7), fr is first calculated from equations (21)
and (26)–(28) of TH1, and then the weighted average of
fr over the grain surface is calculated from equation (34)
of TH1 to obtain the relationship between macroscopic
stresses, sij

S and Pl, and strain rate, _eij
f .)

[10] Equation (5) can be rewritten as

sB
xx � Pl

sB
yy � Pl

sB
xy

sB
yx

0
BBBB@

1
CCCCA

¼

x þ hþ z1ð Þ x � hþ z1ð Þ z3 z3
þ2z2

x � hþ z1ð Þ x þ hþ z1ð Þ z3 z3
�2z2

z3 z3 h� z1 h� z1
z3 z3 h� z1 h� z1

0
BBBBBBBB@

1
CCCCCCCCA

_efxx
_efyy
_efxy
_efyx

0
BBBB@

1
CCCCA;

ð9Þ
which gives the explicit form of the viscous constitutive
relation (2) in two dimensions. Viscosity tensor Cijkl

B (i, j, k,
l = x, y) is symmetric for the exchanges of i and j, k and l, and
ij and kl, and hence generally consists of 6 independent
components. The viscosity tensor Cijkl

B derived here has
four degrees of freedom, corresponding to the 4 parameters
Q1�Q4, which is smaller than 6. However, as shown below,

Figure 1. A two-dimensional grain with 8 contact patches
in the directions of qk = kp/4 (k = 1–8). The contact
function XC(q) takes a value of 1 on the contact patches
(thick line segments) and 0 on the pore surface (thin line
segments). The patch size is given by angle 2Qk, where
point symmetry given by Qk+4 = Qk (k = 1–4) is assumed.
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these 4 parameters are sufficient for describing various
contact anisotropies reported from experimental studies.
[11] Previous studies on the effects of viscous anisotropy

on geodynamics were performed on incompressible fluid
flow. For comparison, anisotropic viscosity in two dimen-
sions for incompressible flow is presented in Appendix A.
The difference between equation (9) and equation (A1)
shows the essential difference between the previous studies
on incompressible flow and the present study on compress-
ible flow of the solid framework.

3.1. Isotropic Viscosity

[12] Under hydrostatic stress, equilibrium texture devel-
ops at which the interfacial energy is at a minimum. The
equilibrium texture is isotropic and is represented by Q1 =
Q2 = Q3 = Q4. In this case, z1 = z2 = z3 = 0 and viscosity
tensor in equation (9) becomes an isotropic tensor:

sB
xx � Pl

sB
yy � Pl

sB
xy

sB
yx

0
BBBBBBBB@

1
CCCCCCCCA

¼

x þ h x � h 0 0

x � h x þ h 0 0

0 0 h h

0 0 h h

0
BBBBBBBB@

1
CCCCCCCCA

_efxx

_efyy

_efxy

_efyx

0
BBBBBBBB@

1
CCCCCCCCA
: ð10Þ

In section 3.4, Qi (i = 1–4) of the equilibrium texture is
related to melt fraction and dihedral angle.

3.2. Stress-Induced Anisotropy

[13] We consider the microstructural anisotropies ob-
served in the experimentally deformed partially molten
rocks or rock analogue. Our discussions focus on stress-
induced anisotropy, in which the direction and amplitude of
the anisotropy are determined by stress. In the applications
presented in sections 5 and 6, we consider simple shear
deformation in which the principal stress axes are fixed with
respect to the spatial coordinate system. Hence, the direction
of anisotropy can be fixed with respect to the spatial
coordinate system. Here, s1 (largest compressive stress)
and s3 (least compressive stress) directions are taken to be
(x, y) = (�1, 1) and (x, y) = (1, 1), respectively (Figures 2a
and 2b). In other words, we consider a stress field given by
sxy
B (>0). Directions of the 8 contact patches qk (k = 1–8) for

each grain can also be fixed to the spatial coordinate system
(Figure 2b).
3.2.1. Case A
[14] The development of stress-induced anisotropy was

reported for partially molten rock analogue under nearly
pure shear deformation [Takei, 2005; also Stress-induced

Figure 2. (a) Two-dimensional Cartesian coordinate axes (x, y) and (b) grain coordinate system qk (k =
1–8). The angles q1,5 and q3,7 coincide with the directions of s3 and s1, respectively, for a simple shear
described by velocity gradient vx,y

S (>0). (c, d, e) Three types of stress-induced anisotropy defined under
the principal stress direction shown in Figures 2a and 2b. In case A, Q1 is reduced; in case B, Q1 and Q2

are reduced; in case C, Q2 is reduced. Direction of melt alignment corresponding to each contact
anisotropy is shown with the angle to the shear plane.
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anisotropy of partially molten rock analogue deformed
under quasi-static loading test, submitted to Journal of
Geophysical Research, 2009]. In this experiment, melt
segregation over distances greater than the grain scale did

not occur, and hence the measured mechanical anisotropy
can be attributed to grain-scale contact anisotropy. Micro-
structure under stress, which was monitored in situ using
ultrasonic shear waves, showed that the area of the contact
faces whose normals are nearly parallel to the s3 direction
decreases, whereas the areas of the other contact faces do
not change. Under the direction of stress shown in
Figures 2a and 2b, this anisotropy can be represented by
reducing Q1 such that Q1 < Q2 = Q3 = Q4, which is
hereafter referred to as case A (Figure 2c). In this case, z2 in
equation (9) is always zero. Under conditions of simple
shear, case A anisotropy represents a melt alignment ori-
ented at an angle of 45� to the shear plane (Figure 2c).
3.2.2. Cases B and A0

[15] In partially molten rocks deformed to more
than 200% strain under simple shear, the alignment of
melt subparallel to the shear plane has been reported by
Zimmerman et al. [1999] and Holtzman and Kohlstedt
[2007]. Although Holtzman and Kohlstedt [2007] reported
not only the grain-scale melt alignment but also the melt
segregation over distances greater than the grain scale, we
focus only on the grain-scale geometry in this section. On
the basis of their observation that the long axes of the
melt pockets are oriented predominantly at an angle of 20�
from s1 [Zimmerman et al., 1999], we approximate this
anisotropy by reducing Q1 and Q2 such that Q1 = Q2 < Q3 =
Q4, which is hereafter referred to as case B (Figure 2d). In
this case, z1 in equation (9) is always zero. Intermediate
cases between A and B described by Q1 < Q2 < Q3 = Q4 is
referred to as case A0.
3.2.3. Case C
[16] For comparison, we further consider the case in

which the melt alignment is parallel to the shear plane.
This geometry, represented by reducing Q2 such that Q2 <
Q1 = Q3 = Q4, is referred to as case C (Figure 2e). In this
case, z3 in equation (9) is always zero.

3.3. Coupling Between Shear and Isotropic
Components

[17] Under the stress orientation shown in Figure 2a, the
major component of the strain rate tensor is _exy

f (= _eyx
f ).

Equation (5) shows that z3 defines the coupling between the
shear component _exy

f and the isotropic component of the
effective stress, (sxx

B + syy
B )/2 � Pl. When z3 6¼ 0, the shear

strain rate _exy
f contributes the component 2z3 _exy

f to the
isotropic stress component, which does not occur with
isotropic viscosity. Significant consequences of this cou-
pling in melt migration dynamics are shown in sections 5–
7. Here, we discuss the microscopic mechanism and define
the coupling factor g.
[18] The microscopic mechanism of the coupling between

the shear and isotropic components is illustrated in Figure 3.
The macroscopic strain rate _exy

f causes the radial velocity
field on the grain as shown in Figure 3a. The radial traction
on the contact patches, satisfying this velocity condition at
XC = 1 and traction condition fr = Pl at XC = 0, is given by
equation (8). The resulting differential traction fr � Pl is
shown in Figure 3b for isotropic contact geometry and in
Figure 3c for anisotropic contact geometry of case A. When
the contact geometry is isotropic (Q1 = Q3), velocity and
differential traction on the contact patches in the tensile and
compressive directions (q1 and q3, respectively) are equal in

Figure 3. Microscopic mechanism for coupling between
shear and isotropic components. (a) Velocity distribution at
the grain-to-grain contact faces (XC = 1, thick line segments)
required under a given macroscopic strain rate _exy

f. At the
pore surface (XC = 0, thin line segments), not velocity but
traction condition (fr � Pl = 0) is required. (b, c) Differential
traction fr � Pl for isotropic contact geometry (Figure 3b)
and for anisotropic contact geometry (Figure 3c) of case A.
Under isotropic contact geometry, the differential traction is
symmetric between the compressive and tensile directions
and does not produce isotropic effective stress. Under case
A anisotropic contact geometry, the differential traction is
reduced in the tensile direction, producing compressive
effective stress.
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amplitude and opposite in sign, so no isotropic effective
stress is produced (Figure 3b). When the contact geometry
is anisotropic (Q1 < Q3), the amplitude of the differential
traction needed to produce the same radial velocity is
much smaller in the tensile direction (q1) because of the
smaller patch size, producing an isotropic effective stress
(Figure 3c). Because the reduction in the amplitude of
differential traction occurs in the tensile direction, the
resulting stress is compressive (negative). This is why z3
is negative for case A, as discussed in section 3.4.
[19] We define a nondimensional coupling factor g as the

ratio between effective pressure and shear stress produced
by shear deformation. From equation (9), when shear
deformation is given by _exy

f and _eyx
f components, g is

equal to the ratio of the off-diagonal components Cxxij
B and

Cyyij
B (i 6¼ j) to the shear components Cijij

B and Cijji
B (i 6¼ j), as

g ¼
� sB

xx þ sB
yy

� �
=2� Pl

n o
sB
xy

������
by _efxy and _efyx

¼ � z3
h� z1

: ð11Þ

When sxy
B > 0, z3 takes a negative value and hence g takes a

positive value, as discussed in section 3.4. (When sxy
B < 0,

z3 is positive and g is negative for case A.)
[20] The coupling between shear and isotropic compo-

nents was actually observed in the deformation experiments
on partially molten rock analogue, in which the contact
anisotropy of case A developed [Takei, 2001, 2005,
Figure 2, also submitted manuscript, 2009]. The compres-

sive effective stress was produced by shear deformation,
confirming the validity of the present model result.
[21] In Figure 3 and in those experiments, the coupling

between shear and isotropic components is manifested in
variations in the isotropic effective stress during uniform
shear deformation without matrix compaction/decompac-
tion (Figure 3a). However, the detailed consequences of the
coupling differ depending on the boundary conditions of the
system at hand. Under the boundary conditions considered
in sections 5 and 6, matrix compaction/decompaction and/or
liquid pressure gradients result from the coupling and drive
melt migration.

3.4. Calculation of Viscosity Tensor Components

[22] We consider partially molten rocks with a given melt
fraction and with various degrees of case A contact anisot-
ropy. This situation can be modeled by gradually decreasing
Q1 from Q1

0 to 0, while fixing Q2, Q3, and Q4 to equal Q1
0.

The isotropic contact geometry obtained at Q1 = Q1
0

corresponds to the equilibrium geometry. Therefore, under
a given dihedral angle, Q1

0 is determined by melt fraction f.
For texturally equilibrated partially molten rocks (dihedral
angle 
20–30�), Q1

0 in the 2-D model can be roughly
related to f as (8Q1

0/p)2 = 1� Af
1
2 withA= 2–2.3 (section 3.1

of Takei and Holtzman [2009b] (hereinafter referred to
as TH2)). Therefore, Q1

0 = 0.2, 0.3, and 0.35, for example,
roughly correspond to f = 0.14–0.10, 0.043–0.033, and
0.01–0.008, respectively.
[23] Let h0 equal h for the isotropic geometry with Q1 =

Q1
0. For Q1

0 = 0.2, 0.3, and 0.35, the viscosity components x,
h, z1, z2, and z3 normalized to h0 are shown in Figure 4 as
functions of Q1 normalized to Q1

0. Also shown is g defined
by equation (11). It is demonstrated that the viscosity
components normalized to h0 are determined by Q1/Q1

0

independently of Q1
0. In other words, each viscosity com-

ponent can be written as h0(Q1
0)f(Q1/Q1

0) or h0(f)f(Q1/Q1
0)

by using an arbitrary function f.
[24] In the applications considered in the latter part of this

paper, we need to know the dependence of g on shear stress
amplitude (section 5) and also the dependences of h � z1
and z3 on f (section 6). We roughly estimate these depend-
ences on the basis of the existing data and the present model
results (sections 3.4.1 and 3.4.2). Validity and uncertainty of
the estimation are further discussed in section 3.5.
3.4.1. Effect of Shear Stress Magnitude on Viscous
Anisotropy
[25] On the basis of considerations of experimental

observations and theory, we propose a relationship between
stress amplitude and anisotropy amplitude. In deformation
experiments on the partially molten rock analogue with
constant f, amplitude of the stress-induced anisotropy
monitored by ultrasonic shear wave anisotropy was approx-
imately linearly dependent on the shear stress amplitude
(Y. Takei, submitted manuscript, 2009). Because elastic
anisotropy is nearly proportional to contact anisotropy in
theory (Figure 10c of TH1 and Figure 7b of Takei [1998]),
the amplitude of contact anisotropy is inferred to be nearly
proportional to the shear stress amplitude in the experi-
ments. In the model presented here (Figure 4), viscosities
and g are linearly dependent on Q1 at small anisotropy
(Q1’Q1

0) but become constant at large anisotropy (Q1’ 0).
From an isotropic stress state and no anisotropy, we consider

Figure 4. For anisotropic contact geometry of case A,
viscosity components x, h, z1, z2 and z3 normalized to
isotropic viscosity h0( = h(Q1 = Q1

0)) and nondimensional
coupling factor g defined by equation (11) are shown as
functions of the size of the reduced patch Q1 normalized to
the initial size Q1

0(= 0.2, 0.3, 0.35).
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that amplitude of anisotropy initially increases linearly with
increasing stress, until a saturation limit above which the
anisotropy is constant with increasing stress (also not con-
sidering structural causes of anisotropy at length scales longer
than the grain size). We introduce the term ‘‘stress-saturated
anisotropy’’ to refer to this state in which the anisotropy has
become independent of the stress magnitude. The homolo-
gous stress (shear stress/rigidity) in the experiments was as
small as 2.3 � 10�5, presumably below this saturation
threshold. In section 5, we assume that the stress amplitude
is larger than the saturation value, so that viscosities and g are
assumed to be constant.
3.4.2. Effect of Melt Fraction on Viscosity and Its
Anisotropy
[26] To estimate the dependence of each viscosity com-

ponent on f, now written as h0(f)f(Q1/Q1
0) with a known

function f, we have to know the dependences of isotropic
viscosity h0 and normalized anisotropy factor Q1/Q1

0 on f.
In TH1, the present model developed for the 3-D isotropic
geometry was shown to predict the porosity-weakening
viscosity consistent with the empirical relationship h /
e�lf, where l ’ 25 (Figure 11b of TH1). Hence, h0 can
be written as h0 = chcce

�lf, where constant c was derived
from our model as 
0.2 (TH1). There is little theory or data
that can constrain directly the dependence of Q1/Q1

0 on f.
The simplest assumption suitable for the first step is that
compared to the strong porosity-weakening effect described
by h0(f) / e�lf, the effect of f on the normalized
anisotropy factor Q1/Q1

0 is minor and can be neglected.
Under this assumption, two factors lh and lz representing
the dependences of h � z1 and z3, respectively, on f under
constant shear stress,

lh ¼ � @ ln h� z1ð Þ
@f

> 0ð Þ

lz ¼ � @ ln z3
@f

> 0ð Þ;

8>><
>>: ð12Þ

can be both simply approximated by the porosity weakening
factor; lh ’ lz ’ l. These factors are used in section 6.

3.5. Predictions From Compositional Model

[27] Although stress induced anisotropy is observed in a
wide range of experiments [Daines and Kohlstedt, 1997;
Zimmerman et al., 1999; Takei, 2001, 2005, also submitted
manuscript, 2009], the underlying mechanisms are poorly
understood. Therefore, in this study, the grain-scale anisot-
ropy is constrained by experimental observations, while an
understanding of the physical mechanisms is in develop-
ment. In the compositional model developed by TH2,
kinetic processes for viscosity and microstructural evolution
are treated self-consistently, resulting in a mechanism for
producing stress-induced anisotropy. The predicted direc-
tion of anisotropy is consistent with case A (Figure 7 of
TH2) and the magnitude is a function of stress (and f)
(Figure 8b of TH2), consistent with the assumptions made
in this study. The model also predicts the existence of stress-
saturated anisotropy and its occurrence in the upper mantle
(Figure 8b of TH2). The anisotropy of case A introduced in
section 3.2.1 reduces total contiguity, 82D =

P4
k¼12Qk/p.

However, the model predicts that both reduction and in-
crease in contiguity occur in the s3 and s1 directions,

respectively (Figure 7 of TH2), causing a slight increase
in 82D. As stated by TH2, our understanding of micro-
structural process is not enough to theoretically predict the
detailed behavior of the total contiguity under stress. Even if
the anisotropy of case A is defined as Q1 < Q2 = Q4 < Q3,
such that 82D is conserved, for example, formulations and
qualitative aspects of this study are not significantly differ-
ent. However, future progress in understanding microstruc-
tural processes under stress may improve the quantitative
aspects of this study.

4. Applications to Melt Migration Dynamics

[28] In sections 5 and 6, two models are developed to
illustrate the fundamental influence that anisotropic consti-
tutive relations have on melt migration dynamics at scales
much longer than the grain scale. The general continuum
equations that describe coupling between melt migration
and deformation are solved. These equations are composed
of conservation of mass and momentum in a solid-liquid
two-phase system and a viscous constitutive relation for the
solid framework [e.g., McKenzie, 1984; Spiegelman and
McKenzie, 1987].
[29] Up to this point, liquid stress Pl (tension positive) has

been used in developing constitutive relations of TH1 and
TH2 and in sections 2 and 3 of this paper. However, in the
following part of this paper, we use a different sign
convention for liquid pressure, denoted pL(= �Pl, compres-
sion positive), for consistency with other studies of two-
phase dynamics [e.g., McKenzie, 1984; Spiegelman and
McKenzie, 1987]. Governing equations for the conservation
of mass and momentum of a solid-liquid two-phase system
are generally written as

@ frLð Þ
@t

þr � frLvL
� �

¼ G; ð13Þ

@ 1� fð ÞrS
� �

@t
þr � 1� fð ÞrSvS

� �
¼ �G; ð14Þ

�rpL ¼ hLf
kf

vL � vS
� �

� rLg; ð15Þ

pL;i ¼ sB
ij þ pLdij

h i
; j
þ �rgi; ð16Þ

where vS and vL are solid and liquid velocities, respectively,
rS and rL are solid and liquid densities, respectively, with �r =
(1 � f)rS + frL, G is the mass exchange rate between solid
and liquid, hL is the liquid viscosity, kf is the permeability,
and g is the gravitational acceleration. In sections 5 and 6,
in order to explore the consequences of grain scale contact
anisotropy or melt alignment on the macroscopic dynamics
of the two-phase systems, we solve equations (13)–(16)
together with equation (9) under two simple boundary
conditions. One is a rotary shear deformation under
constant torque, which contains a shear stress gradient
(section 5). The other is a simple shear deformation under
constant shear stress (section 6). The evolution of porosity
structure resulting from the anisotropic viscosity given by
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equation (9) is investigated. This approach implicitly
assumes that the timescale for the development of grain-
scale melt alignment is much smaller than that for the
development of larger-scale porosity structures considered
in sections 5 and 6.

5. Melt Migration in Rotary Shear Deformation

[30] The general question explored here is how melt
responds to a stress gradient, which can exist in many kinds
of fluid dynamical settings, such as cylindrical Couette flow
(rotary shear), corner flow, and Poiseuille flow. Stress
gradients do not exist in steady state simple shear. Here
we focus on the rotary shear problem, for which we can
obtain the exact solutions, and demonstrate the occurrence
of melt migration up stress gradients. This phenomenon has
also been found to occur in rotary shear experiments in
partially molten metals [e.g., Gourlay and Dahle, 2005]. On
the basis of the results of this section, approximate solutions
for the ridge and subduction corner flow models are derived
in section 7.2.

5.1. Formulation

[31] In rotary shear deformation (Figure 5a), torque is
constant at all radii and hence the amplitude of shear stress
sB
rq increases with decreasing radius r by r�2. We consider a

rotary shear deformation of solid-liquid composite system to
demonstrate the influence of a shear stress gradient on
liquid migration. The cylindrical coordinate system (r, q)
shown in Figure 5a is used. For simplicity, axial symmetry
is assumed and hence the derivatives with respect to q are
zero. Stress-induced anisotropy developed under an axially
symmetric stress field is also axially symmetric. Hence, as
discussed in section 3.2, the 8 contact directions qk (k = 1, 2,
. . ., 8) of each grain can be taken as q = pk/4 which are
fixed to the cylindrical coordinate system (Figure 5b). By
considering the case A contact anisotropy (Figure 2c) and

by using liquid pressure pL (compression positive), the
viscous constitutive relation is written as

sB
rr þ pL

sB
qq þ pL

sB
rq

sB
qr

0
BBB@

1
CCCA

¼

x þ hþ z1ð Þ x � hþ z1ð Þ z3 z3
x � hþ z1ð Þ x þ hþ z1ð Þ z3 z3

z3 z3 h� z1 h� z1
z3 z3 h� z1 h� z1

0
BBB@

1
CCCA

_efrr
_efqq
_efrq
_efqr

0
BBBB@

1
CCCCA;

ð17Þ

where x, h, z1, and z3 are given by equations (6)–(7).
[32] By assuming G = 0, and rS and rL to be constants,

and also by neglecting the effects of gravity, governing
equations (13)–(16) and (17) are written as

df
dt

¼ 1� f
r

@

@r
rvSr
� �

; ð18Þ

@

@r
rvSr
� �

¼ � @

@r
rf vLr � vSr
� �� �

; ð19Þ

� @pL

@r
¼ hLf

kf
vLr � vSr
� �

; ð20Þ

@pL

@r
¼ @

@r
x _efrr þ _efqq
� �

þ 2z3 _e
f
rq

h i
þ 1

r2
@

@r
r2 hþ z1ð Þ _efrr � _efqq

� �h i
; ð21Þ

0 ¼ 1

r2
@

@r
r2z3 _efrr þ _efqq

� �
þ r2 h� z1ð Þ 2 _efrq

h i
; ð22Þ

Figure 5. Rotary shear deformation under constant torque T0. The directions of (a) 2-D cylindrical
coordinate system (r, q) and (b) grain coordinate system qk (k = 1–8) are shown. Shear stress srq

B

increases with decreasing radius r by r�2.
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where _err
f ± _efqq = @vr

S/@r ± vr
S/r and 2 _efrq = @vq

S/@r � vq
S/r. The

boundary conditions are given by

r2sB
rq rð Þ ¼ T0 for all r

sB
rr ¼ sn0 at r ¼ b

vSq ¼ 0 at r ¼ a

vSr ¼ vLr ¼ 0 at r ¼ a; b

8>>>><
>>>>:

ð23Þ

where a and b represent the inner and outer radii,
respectively, and T0 and sn0 are constants. T0 represents
the torque per unit length in the z direction. Using these
equations, we investigate the evolution of the porosity
structure with anisotropic viscosity.

5.2. Solution for an Isotropic Case

[33] For comparison, we first solve a simple case that
viscosity tensor is isotropic (z1 = z3 = 0). This corresponds
to Q1/Q1

0 = 1 in Figure 4. We introduce the nondimension-
alized variables defined by

Va ¼ T0

2h0b

� ��1

va a ¼ S;Lð Þ

R ¼ r=b

t ¼ 2h0b
2

T0

� ��1

t;

8>>>>>>><
>>>>>>>:

ð24Þ

where h0 represents h for the isotropic geometry Q1/Q1
0 = 1.

The solution for the isotropic case is obtained as

VS
q ¼ VL

q ¼ R 1

a=bð Þ2 �
1
R2

� �
VS
r ¼ VL

r ¼ 0
df
dt ¼ 0:

8><
>: ð25Þ

Also, srr
B = sB

qq = �pL = sn0 is satisfied in the isotropic case.
Therefore, without viscous anisotropy, rotary shear defor-
mation drives neither melt migration nor porosity change.

5.3. Solution for an Anisotropic Case

[34] We demonstrate that with anisotropic viscosity, liquid
migrates toward the inner part and hence migrates up stress
gradients in the solid framework. Amplitude of the viscous
anisotropy generally depends on the shear stress amplitude and
porosity f. Here, we consider only the initial evolution of
porosity from a constant porosity sample. Hence, f can be
approximated to be uniform and constant. The amplitude of
sB
rq varies with radius. As discussed in section 3.4.1, x, h, z1,

and z3 are linear functions of the amplitude of sB
rq at small sB

rq
and are constants at large sB

rq. By assuming that sB
rq is large

enough for all r (i.e., stress-saturated anisotropy exists
throughout the domain), x, h, z1, and z3 are treated as
constants. Hence, the factor g, which describes the coupling
between shear and isotropic components, defined by
equation (11) in section 3, is also constant. If we assume these
viscosities and g to be linear functions ofsB

rq, themathematical
treatment becomes more complicated but the essence of the
result does not change. By using the same nondimensional
scheme as equations (24), we obtain from equations (19)–(23)

b2

d2c
VS
r � @

@R

@VS
r

@R
þ VS

r

R

� �
¼ 4h0g

x þ hþ z1 þ gz3

1

R3

VS
q ¼ h0

h� z1
R

1

a=bð Þ2
� 1

R2

 !
þ gR

Z R

a=b

r � VS

R0 dR0:

8>>><
>>>:

ð26Þ

An important nondimensional parameter in this problem is
dc/b, representing the ratio between system size and
compaction length dc, which is defined by

dc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x þ hþ z1 þ gz3ð Þkf

hL

s
: ð27Þ

In the following calculations, we use the values of x/h0, h/h0,
z1/h0, and z3/h0 calculated for Q1/Q1

0 = 0, which are
approximately independent of Q1

0 or f, as shown in
Figure 4. The inner radius is taken to be R = 0.5 (not to be
confused with grain radius used by TH1 and TH2).
[35] The solutions for tangential velocity VS

q and VL
q

(Figure 6a), radial velocity Vr
S and Vr

L (Figure 6b), and rate
of porosity change df/dt versus radius R (Figure 6c) are
shown in Figure 6, for dc/b = 0.5 (solid lines) and dc/b =
0.05 (dotted lines). The first equation of (26) is solved
numerically by the finite difference method. In addition to
the tangential motion similar to the isotropic case
(Figure 6a), outward motion of the solid is balanced by
inward motion of the liquid (Figure 6b). Therefore, porosity
increases in the inner part and decreases in the outer part
(Figure 6c). The result demonstrates that liquid migrates up
stress gradients in the solid framework. When the compac-
tion length is much smaller than the system size, the
porosity change occurs only in the localized boundary
regions (Figure 6c, dc/b = 0.05).

5.4. Role of Viscous Anisotropy

[36] We calculate the driving forces for the porosity
evolution in rotary shear, to understand why viscous anisot-
ropy causes melt migration up stress gradients. When
compaction length (dc) is large compared to the system size
(b), the dominant driving force for porosity evolution is the
same as that for matrix compaction/decompaction, shown in
section 5.4.1. When dc is smaller than b, the dominant
driving force for porosity evolution is the liquid pressure
gradient, shown in section 5.4.2. In both cases, coupling
between shear and isotropic components, represented by g,
plays a key role.
5.4.1. Effect of Viscous Anisotropy on Matrix
Compaction/Decompaction
[37] The driving force for matrix compaction, �r � vS, is

obtained from the constitutive relation (17) as

� x þ gz3ð Þr � vS ¼ pB � pL
� �

� gsB
rq; ð28Þ

where pB = �(srr
B + sB

qq)/2 represents the bulk or total
pressure (compression positive). When viscosity is isotropic
(g = 0), matrix compaction is driven by effective pressure
pB � pL. However, when viscosity is anisotropic, matrix
compaction is driven not only by the isotropic stress
component pB � pL but also by the shear stress component
sB
rq. For the anisotropy of case A, that is, when weakening

occurs in the s3 direction, g is positive at sB
rq > 0 and

negative at sB
rq < 0 (section 3.3). Hence, gsB

rq is always
positive, showing that shear stress tends to drive matrix
decompaction. Melt migration up stress gradients in the
solid occurs because the driving force for decompaction
increases with increasing shear stress amplitude (i.e.,
decreasing r).
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[38] For the two cases shown in Figure 6, Figures 7a and 7b
show the driving force for matrix compaction, (pB � pL) �
gsB

rq, together with liquid pressure pL, total pressure pB,
and �gsB

rq. We can see that although effective pressure
pB � pL is positive for all R, matrix decompaction occurs
in the inner part because of the significant tendency for
decompaction produced by gsB

rq. When compaction length

Figure 6. Solutions for the rotary shear deformation of
solid-liquid two-phase system with anisotropic viscosity.
(a) Tangential velocities of solid (Vq

S) and liquid (Vq
L),

(b) radial velocities of solid (Vr
S) and liquid (Vr

L), and
(c) porosity change versus normalized radius R = r/b,
for normalized compaction length dc/b = 0.5 (solid lines)
and dc/b = 0.05 (dotted lines). In Figure 6b, Vr

L is shown for
f = 0.04.

Figure 7. Solutions for the rotary shear deformation of
solid-liquid two-phase system with anisotropic viscosity.
(a, b) Stress states of the system with normalized
compaction length dc/b = 0.5 (Figure 7a) and dc/b = 0.05
(Figure 7b). (pB � pL) � gsrq

B represents the driving force
for matrix compaction, where pB and pL represent the total
and liquid pressures (compression positive), respectively,
and�gsrq

B represents a contribution from shear stress due to
the coupling between shear and isotropic components. (c)
Liquid pressure gradients for various dc/b along with an
approximation by equation (31). Pressures normalized to
srqB jr=b are plotted under sn0 = 0.
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dc is large compared to system size b, the driving force for
the matrix compaction/decompaction is large and hetero-
geneous, whereas the liquid pressure gradient is nearly
zero (Figures 7a and 7c). However, when dc is much
smaller than b, the driving force for the matrix compac-
tion/decompaction is nearly zero except for the localized
regions, whereas large liquid pressure gradient develops in
the direction of liquid migration (Figures 7b and 7c).
5.4.2. Effect of Viscous Anisotropy on Liquid
Pressure Gradient
[39] By substituting equation (2) into equation (16) with

pL = �Pl, we obtain

pL;i ¼
1

2
CB
ijkl vSk;l þ vSl;k

� �h i
;j
þ �rgi: ð29Þ

Equation (29) describes the effects of matrix deformation vS

on the liquid pressure gradient, which drives liquid flow by
equation (15).WhenCijkl

B is isotropic, the first term in the right-
hand side of equation (29) consists of (x + h/3)r(r � vS) and
hr2vS. Hence, for volume conserving shear deformation of the
matrix (r � vS = 0), only deformation with nonzero r2vS can
produce a liquid pressure gradient [Spiegelman andMcKenzie,
1987; Phipps Morgan, 1987]. When Cijkl

B is anisotropic,
however, there is a range of mechanisms by which the matrix
shear deformation can create a liquid pressure gradient. For
simplicity, we consider a simple shear dominantly given by
vx,y
S and varying in the y direction due to stress gradient (e.g.,
Figure 2a). For case A contact anisotropy, that is, when
weakening occurs in the s3 direction, the off-diagonal
components Cyyxy

B and Cyyyx
B (= z3) are nonzero and have the

opposite sign of vx,y
S (section 3.3). Therefore, the y component

of the liquid pressure gradient given by equation (29), p,y
L =

[Cyyxy
B vx,y

S ],y, predicts migration up the solid stress gradient.
For the solid flow field illustrated in Figure 2a (vx,y

S > 0, z3 < 0,
and vx,yy

S < 0), equation (29) predicts p,y
L = z3vx,yy

S > 0 and
hence predicts a flow toward the �y direction.
[40] Spiegelman and McKenzie [1987] proposed a simple

method to estimate liquid pressure gradients by substituting
into equation (29) an approximate solution of matrix defor-
mation vS obtained under the assumption of constant
porosity. Here, we assess the applicability of this method
to systems with anisotropic viscosity, by comparing the
liquid pressure gradients estimated from the simple method
to the exact solutions for the rotary shear systems. In section
7.2, we further apply this simple model to estimate the
effect of viscous anisotropy on melt streamlines in the
mantle at ridges and subduction zones.
[41] To solve the rotary shear model under the assumption

of constant porosity, equation (17) is first modified to a form of
viscosity for an incompressible fluid, a general form of which
is presented in Appendix A. Then, equation (17) becomes

sB
rr þ pB

sB
qq þ pB

sB
rq

sB
qr

0
BBB@

1
CCCA ¼

2ðhþ z1Þ 0 0 0

0 2ðhþ z1Þ 0 0

0 0 h� z1 h� z1
0 0 h� z1 h� z1

0
BBB@

1
CCCA

�

_efrr
_efqq
_efrq
_efqr

0
BBBB@

1
CCCCA: ð30Þ

Under equation (30), matrix deformation of the rotary shear
system is solved as _erq

f = _eqr
f = T0/{2r

2(h � z1)}, _err
f = 0, and

_efqq = 0. By substituting this solution into equation (21), we
obtain

@pL

@r
¼ 2gT0

r3
: ð31Þ

The liquid pressure gradient given by equation (31) is
shown in Figure 7c (thick dotted line), along with the exact
solutions of equations (17)–(23) for various values of dc/b
(solid lines). The solutions for small dc/b, where compac-
tion/decompaction is significant only near the inner and
outer radii, are closely approximated by equation (31). As
dc/b increases, the liquid pressure gradient deviates from
equation (31), because effects of matrix compaction/
decompaction become nonnegligible. Therefore, for the
case of dc/b � 1, the liquid pressure gradient can be closely
approximated by the simple model.
[42] In section 7.2, the simple method tested here for the

rotary shear system is applied to the mantle flow at ridges
and subduction zones, by assuming that the compaction
length is much smaller than the spatial scale of the system.
Use of equation (17) in the rotary shear model is based on
the assumption that the s3 direction is 45� to the shear
plane, which is the case with isotropic viscosity. With
anisotropic viscosity, the deviatoric component _err

f � _efqq
is not exactly zero and affects the principal stress directions.
However, using the exact solutions of the rotary shear
system, we verified that this effect is insignificant especially
when the spatial scale is much larger than the compaction
length; the deviation of the s3 direction from 45� reaches a
maximum at the boundary (r = a, b) but still <6� for dc/b >
1, <2� for dc/b < 0.1 and <1� for dc/b < 0.05. Therefore, in
section 7.2, we estimate magnitude and orientation of grain-
scale anisotropy from the stress with isotropic viscosity.

6. Linear Analysis of the Formation of Melt-Rich
Bands by Simple Shear

[43] Holtzman et al. [2003a, 2003b] deformed partially
molten rocks under simple shear and observed the formation
of melt-rich bands, which develop at small strains (<1) and
persist at low angles (
15–20�) to the plane of shear.
Unstable growth of melt-rich bands in porous media
undergoing pure shear was predicted in a model developed
by Stevenson [1989] with porosity weakening viscosity.
Spiegelman [2003] extended this model to simple shear
and showed that the observed low angle cannot be
explained by the simple porosity weakening model because
the maximum growth rate occurs at higher angle (
45�).
Katz et al. [2006] showed that the experimentally observed
low angle can be explained by considering a model with
porosity-weakening and non-Newtonian viscosity, because
the maximum growth rate occurs at low angles due to a
balance of porosity weakening and strain rate weakening.
Here, we consider this problem on the basis of our new
model with porosity-weakening and anisotropic viscosity
and show that the observed low angle can be explained by
viscous anisotropy, without taking into account a non-
Newtonian viscosity.
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6.1. Formulation

[44] The analysis follows closely the linear stability analysis
developed by Spiegelman [2003] and Katz et al. [2006]. The
present analysis is based on the viscosity tensor given by
equation (9), including cases A–C (Figures 2c–2e). Liquid
pressure pL(=�Pl) is used in this section. By assuming G = 0,
and rL and rS be constants, and also by neglecting the effects of
gravity, governing equations (13)–(16) are written as

df
dt

¼ ð1� fÞr � vS ; ð32Þ

r � vS ¼ �r � fðvL � vSÞ
� �

; ð33Þ

�rpL ¼ hLf
kf

vL � vS
� �

; ð34Þ

@pL

@x
¼ @

@x
x þ hþ z1 þ 2z2ð Þ _efxx þ x � h� z1ð Þ _efyy

h
þ 2z3 _e

f
xy

i
þ @

@y
z3 _efxx þ _efyy
� �

þ 2 h� z1ð Þ _efxy
h i

; ð35Þ

@pL

@y
¼ @

@y
x � h� z1ð Þ _efxx þ x þ hþ z1 � 2z2ð Þ _efyy

h

þ 2z3 _e
f
xy

i
þ @

@x
z3 _efxx þ _efyy
� �

þ 2 h� z1ð Þ _efyx
h i

: ð36Þ

Following the previous studies, we consider the case of
infinite domains.
6.1.1. Stationary State
[45] First, we consider an infinite system with homoge-

neous melt fraction f = f0, which has a homogeneous and
anisotropic viscosity tensor described by x0, h0, z1

0, z2
0, and

z3
0. The coupling factor defined by equation (11) is written
as g0 = �z3

0/(h0 � z1
0). As a stationary state solution

satisfying equations (32)–(36), we consider a uniform

simple shear deformation in the x direction under constant
shear and normal stresses, sxy

B0, sxx
B0, and syy

B0(= sxx
B0),

2 _ef 0xy ¼ sB0
xy =ðh0 � z01Þ

vS0x ¼ vL0x ¼ 2 _ef 0xy � y

vS0y ¼ vL0y ¼ 0

�pL0 ¼ sB0
yy þ g0sB0

xy :

8>>>>>>>><
>>>>>>>>:

ð37Þ

6.1.2. Linear Stability Analysis
[46] We investigate the stability of the stationary state

against a plane wave perturbation in melt fraction f
(Figure 8). We define nondimensionalized variables using
the stationary state solution, as

t ¼ 2 _ef 0xy t

X ¼ x=d0c

Va ¼ va=ð2 _ef 0xy d
0
cÞ ða ¼ S; LÞ

PL ¼ pL=sB0
xy ;

8>>>>>>>><
>>>>>>>>:

ð38Þ

where nondimensional time t represents the total simple
shear, and dc

0 represents the compaction length for f = f0. In
this section, dc is defined by

dc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx þ h� 3z1Þkf

hL

s
; ð39Þ

which is slightly different from (27).
[47] A small perturbation in f and small perturbations in

the relevant properties are written as

fðX; tÞ ¼ f0 þ �f1ðX; tÞ

xðfÞ ¼ x0ðf0Þ þ � x1ðf1Þ

hðfÞ ¼ h0ðf0Þ þ � h1ðf1Þ

z iðfÞ ¼ z0i ðf0Þ þ � z1i ðf1Þ ði ¼ 1; 2; 3Þ

Va
x ðX; tÞ ¼ Va 0

x ðY Þ þ �Va 1
x ðX; tÞ ða ¼ S;LÞ

Va
y ðX; tÞ ¼ �Va 1

y ðX; tÞ ða ¼ S;LÞ

PLðX; tÞ ¼ PL0 þ �PL1ðX; tÞ;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð40Þ

where � � 1. In the following analysis, the melt fraction
dependences of h1� z1

1 and z3
1 play important roles. Using the

two factors lh(>0) and lz(>0) introduced in section 3.4.2,
these dependences are written in linearized forms as

� h1 � z11
h0 � z01

¼ lhf1

� z13
z03

¼ lzf1:

8>>><
>>>:

ð41Þ

Figure 8. For linear analysis, a plane wave perturbation in
melt fraction which makes angle q with the shear plane is
considered. The unit vectors n and n? are normal to the
perturbation plane and perpendicular to n (parallel to the
perturbation plane), respectively.
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As discussed in section 3.4.2, we assume that lh ’ lz ’ l,
where l is an experimentally obtained porosity weakening
factor which has a value of 
25.
[48] Following the previous studies [Spiegelman, 2003;

Katz et al., 2006], we seek solutions for the full linearized
equations of the form

f1ðX; tÞ ¼ esðtÞeiK�X

VL1ðX; tÞ ¼ ALðtÞf1ðX; tÞ nþ BLðtÞf1ðX; tÞn?

VS1ðX; tÞ ¼ ASðtÞf1ðX; tÞ nþ BSðtÞf1ðX; tÞn?

PL1ðX; tÞ ¼ APðtÞf1ðX; tÞ;

8>>>>>>>><
>>>>>>>>:

ð42Þ

where nondimensional wave number K, unit vector n
normal to the plane of perturbation, and unit vector n?
perpendicular to n or parallel to the perturbation plane are
given by

K ¼ Kx

Ky

� �
¼ K0

x

K0
y � K0

x t

� �

n ¼ K

K
¼ sin qðtÞ

cos qðtÞ

� �

n? ¼ cos qðtÞ
� sin qðtÞ

� �

8>>>>>>><
>>>>>>>:

ð43Þ

with K0 = K(t = 0) and K = jKj. q represents the angle
which the plane wave perturbation makes with the shear
plane (Figure 8). From equations (33) and (34), we obtain

AP ¼ h0
AS

iK

AL ¼ � 1� f0

f0
AS

BL ¼ BS ;

8>>>>>><
>>>>>>:

ð44Þ

where

h0 ¼
x0 þ h0 � 3z01

h0 � z01
: ð45Þ

In the previous studies, solid velocity was decomposed into
its compressible and incompressible components using
potentials U1 and y1

s , respectively [Spiegelman, 2003; Katz
et al., 2006]. The parameters AS and BS defined by
equation (42) can be related to U1 and y1

s as iKASf1 =
r2U1 and iKBSf1 = r2y1

s . We introduce here matrix
decompaction C and rotation W defined by

C ¼ iKAS

W ¼ iKBS ;

8<
: ð46Þ

which can be identified with C* and (ik)2y*, respectively,
used by Spiegelman [2003] and Katz et al. [2006]. From
equations (35) and (36), C and W are solved as

h0

K2
þ h0 þD11 D12

D21 1þD22

0
B@

1
CA C

W

0
@

1
A ¼

2lhnxny � lzg0

lhðn2y � n2xÞ

0
@

1
A;

ð47Þ

where

D11 ¼ 2h1n
4
x þ 2h2n

4
y � 4g0nxny

D12 ¼ D21 ¼ 2h1n
3
xny � 2h2nxn

3
y þ g0ðn2x � n2yÞ

D22 ¼ 2n2xn
2
yðh1 þ h2Þ

8>>>><
>>>>:

ð48Þ

and

h1 ¼
2z01 þ z02
h0 � z01

h2 ¼
2z01 � z02
h0 � z01

:

8>>><
>>>:

ð49Þ

From equation (32), we obtain the growth rate as

ds

dt
¼ ð1� f0ÞC

¼ ð1� f0Þ �
ð1þD22Þð2lhnxny � lzg0Þ �D12lhðn2y � n2xÞ

ð1þD22Þðh0=K2 þ h0 þD11Þ �D12D21

:

ð50Þ

When viscosity is isotropic, Dij (i, j = 1, 2), g0, and
z1�3
0 vanish, and equation (50) becomes

ds

dt
¼ ð1� f0Þ h0

x0 þ h0

� �
2lhnxny

K�2 þ 1
; ð51Þ

which is equal to the result of Spiegelman [2003,
equation (27)]. (The factor x = h0/(z0 + 4h0/3) of
Spiegelman [2003] with bulk and shear viscosities z0 and
h0, and the factor h0/(x0 + h0) in equation (51) with bulk
and shear viscosities x0 and h0 are different by the factor
4/3 in the denominator, because this present study is
based on the constitutive relation derived in two
dimensions.)
[49] The exponential factor s of the amplitude of the wave

which makes angle q with the shear plane at nondimen-
sional time (or strain) t is given by

sðq; tÞ ¼
Z t0¼t

t0¼0

ds

dt

����
qðt0Þ

dt0; ð52Þ

where q (t0) at t0 � t is calculated from equations (43) with
initial angle q0 given by

q0 ¼ arctan
sin qðtÞ

cos qðtÞ þ t � sin qðtÞ

� �
: ð53Þ

6.2. Growth Rate of Melt-Rich Bands

[50] When the nondimensional wave number K is much
larger than 1 (perturbation wavelength is much smaller than
the compaction length dc

0), the growth rate given by equa-
tion (50) is almost independent of K, and when K becomes
smaller than 1 (perturbation wavelength is larger than dc

0), it
decreases with decreasing K. Therefore, we only consider
further the former condition and assume that the growth rate
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is independent of K. Figure 9a shows growth rate versus q at
nondimensional time (or strain) t = 0 predicted from our
model at K � 1. The calculation is performed for the
anisotropic contact geometry of case A (Figure 2c). The
curve of Q1/Q1

0 = 1 shows the isotropic case, and the curves
of Q1/Q1

0 < 1 show the anisotropic cases. For the isotropic

case, the growth rate is positive at q < 90� and negative at q >
90�, with a peak value at q = 45�, consistent with the work by
Spiegelman [2003]. As anisotropy increases, the growth rate
at q = 45� decreases and the curve labeledQ1/Q1

0 = 1/3 shows
two peaks at q ’15� and q ’ 75�.
[51] The effect of increasing strain is shown in terms of

the logarithmic amplitude s(q, t) versus q at t = 1, in
Figure 9b. For the anisotropic case with Q1/Q1

0 = 1/3, the
peak initially at q ’15� stays at almost the same direction,
whereas the peak initially at q ’ 75� moves to about 90�
and the amplitude of the high-angle peak is smaller than that
of the lower angle peak. The different behavior of the
two peaks is explained by the rotation of the plane
wave perturbation caused by the background simple shear
[Spiegelman., 2003]. Because the rotation is slower for
lower angle, the plane wave perturbations initially near
the low-angle peak grow more efficiently than those initially
near the high-angle peak, which rotate quickly toward
higher angle and begin to shrink at q > 90�.
[52] To illustrate how the system evolves, we show

amplitude es(q,t) versus q with increasing t in Figure 9c,
for the anisotropic case withQ1/Q1

0 = 1/3 and for (1�f0)lh =
25.A sharp peak develops at small strain (t <1) and persists at
low angle (
15–25�) for t � 4. A solid circle on each line
plots the angle and amplitude of the perturbation initially at q=
15�, showing that the apparent rotation of melt-rich bands is
much slower than the rotation of the matrix, especially at t >
1. This separation indicates that the dominant bands are not
fixed to the solid matrix, implying that melt must migrate
relative to the solidmatrix. Squaresmark experimental data at
the position of (q, t + 1), such that the short horizontal
distances between symbols and peaks indicate the good
agreement between measured and predicted angles.

6.3. Role of Viscous Anisotropy

[53] For understanding the effect of viscous anisotropy on
the formation of melt-rich bands, equation (47) is further
written as

h0

K2
þ h0 þD11 D12

D21 1þD22

0
B@

1
CA C

W

0
@

1
A ¼ l

s0
n þ PL0

s0
t

0
@

1
A; ð54Þ

Figure 9. (a) Growth rate ds/dt of melt-rich band versus q
at nondimensional time (or strain) t = 0 for isotropic
viscosity (Q1/Q1

0 = 1) and for anisotropic viscosity of case A
(Q1/Q1

0 = 2/3, 1/3). Value of ds/dt divided by l(1 � f0) is
shown. (b) Logarithmic amplitude s versus q at t = 1 for
isotropic viscosity (Q1/Q1

0 = 1) and for anisotropic viscosity
of case A (Q1/Q1

0 = 2/3, 1/3). Value of s divided by l(1 �
f0) is shown. (c) Amplitude es versus q at various t for
anisotropic viscosity of case Awith Q1/Q1

0 = 1/3. Amplitude
normalized to the maximum value at each t, es/es(max), is
plotted at the position of (q, t + es/es(max)). Solid circles
show the evolution in angle and amplitude of the
perturbation initially at q = 15�. Squares show experimental
data at the position of (q, t + 1).
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where sn
0 and st

0 represent the stresses normal and
tangential, respectively, to the plane of perturbation. These
stresses are given by

s0
n þ PL0 ¼ sB0

ij ninj=s
B0
xy þ PL0 ¼ 2nxny � g0

s0
t ¼ sB0

ij niðn?Þj=sB0
xy ¼ n2y � n2x ;

8<
: ð55Þ

and lh = lz = l is assumed. As the first line of equation (50)
shows, a positive value of matrix decompaction C indicates
the unstable growth of melt-rich bands. Hence, the right-
hand side and left-hand side of equation (54) represent the

driving force and the resistance, respectively, for the band
growth; when K � 1 the resistance to band growth is
dominated by the matrix deformation. When viscosity is
isotropic, Dij = 0 (i, j = 1, 2) and left-hand side of equation
(54) becomes a diagonal matrix. In this case, C is produced
only by the effective normal stress sn

0 + PL0 and is not
affected by the tangential stress st

0. When viscosity is
anisotropic, the off-diagonal components D12 and D21 are
nonzero and C is produced not only by the normal stress but
also by the tangential stress.
[54] The detailed mechanisms of band formation with iso-

tropic and anisotropic viscosities predicted by equation (54)
are illustrated by showing the driving forces sn

0 + PL0 and st
0

(Figures 10a and 11a), sensitivity of C to these forces
(Figures 10b and 11b), and the growth rates produced by

Figure 10. Mechanism for the unstable growth of melt-
rich band with isotropic viscosity. (a) Components of the
effective stress normal and tangential to the plane of
perturbation which makes angle q with the shear plane
(tension positive). (b) Sensitivities of matrix decompaction
C to normal (labeled n) and tangential (labeled t) stresses.
(c) Growth rate ds/dt of melt-rich band produced by normal
stress (labeled n) and tangential stress (labeled t) and the
total of these two (thick line). Solid and dotted lines in
Figures 10b and 10c show the linear viscosity model
[Spiegelman, 2003] and the nonlinear viscosity model [Katz
et al., 2006], respectively.

Figure 11. Mechanism for the unstable growth of melt-
rich band with case A anisotropic viscosity with Q1/Q1

0 =
1/3. (a) Components of the effective stress normal and
tangential to the plane of perturbation which makes angle q
with the shear plane (tension positive). (b) Sensitivities of
matrix decompaction C to normal and tangential stresses.
(c) Growth rate ds/dt of melt-rich band produced by normal
stress and tangential stress and the total of these two (thick
line).
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the two driving forces (Figures 10c and 11c). Sensitivity to
the effective normal stress is given by (1 + D22)/det and the
sensitivity to the tangential stress is given by �D12/det,
where det = (h0 + D11)(1 + D22) � D12D21. For isotropic
viscosity, the sensitivity to the tangential stress is zero for all q
(solid line labeled ‘‘t’’ in Figure 10b), and a positive value of
the growth rate results only from an extensional effective
normal stress (sn

0 + PL0 > 0). For the anisotropic case, the
effective normal stress is more compressive than the isotropic
case due to the effect of g0 (equation (55) and Figure 11a),
which leads to the reduction of the growth rate driven by the
effective normal stress (Figure 11c). The significant decrease
of the growth rate at q = 45� in the anisotropic case (Figure 9a)
is due to this reduction of the extensional effective normal
stress. Although the growth rate produced by the effective
normal stress is mostly negative, the growth rate produced by
the tangential stress is positive and has two peaks at low and
high angles (Figure 11c). We therefore conclude that with
isotropic viscosity, the melt rich bands are dominantly pro-
duced by the effective normal stress, whereas with the aniso-
tropic viscosity, the melt-rich bands are dominantly produced
by the tangential stress. The change in peak angle due to the
viscous anisotropy (Figure 9a) reflects such difference.

6.4. Comparison to the Model of Katz et al. [2006]

[55] Another mechanism in which tangential stress affects
the band formation and causes a change in the direction of
maximum growth rate was proposed by Katz et al. [2006].
The band formation mechanism in their model can also be
described in the same form as equation (54) (Appendix B)
and is shown in Figure 10 by the dotted lines. Although
their model assumes isotropic viscosity, the sensitivity of
C to the tangential stress is nonzero due to the strain rate-
weakening effect caused by the power law creep (dotted
line labeled ‘‘t’’ in Figure 10b). The growth rate produced
by the tangential stress has two peaks at low and high
angles (dotted line labeled ‘‘t’’ in Figure 10c).
[56] The amplitude es(q,t) versus q predicted from the

model of Katz et al. [2006] is shown in Figure B1 in
Appendix B with the result of this study for comparison. As
shown in Appendix B, the values of the parameters used by
Katz et al [2006] (a = �25 and n = 6) overestimate the
porosity-weakening effect. We therefore show the results of
their model both for the parameter values similar to their
original values ((1� f0)l/n = 25, n = 6, and x0/h0 = 10; solid
lines in Figure B1) and for the modified values ((1� f0)l/n =
25/6, n = 6, and x0/h0 = 10; dotted lines in Figure B1). When
the modified values are used, the rapid formation of low-
angle melt-rich bands (t � 1) is better explained by the
present model than the model of Katz et al. [2006].
[57] Katz et al. [2006] performed not only the linear

stability analysis but also a fully nonlinear simulation,
which becomes important especially at large t. A good
agreement between the linear stability analysis and the
simulation was obtained by Katz et al. [2006] for the
stability of the band angle. A similar fully nonlinear analysis
with anisotropic viscosity is necessary to further explore the
mechanisms for band stability proposed here.

6.5. Comparison to the Experimental Results

[58] These results are consistent with several basic obser-
vations in experiments: first, the melt alignment and orien-

tation at the grain scale that cause the anisotropic viscosity
must precede the segregation at wavelengths longer than the
grain scale. This sequence is observed in experiments, with
melt pockets aligning at the grain scale before shear strains
of 1, followed by longer wavelength segregation [Holtzman
and Kohlstedt, 2007]. Second, the low-angle bands are more
stable than higher angle bands to large shear strains (>3).
Thus, it is not necessary to invoke non-Newtonian viscosity
to account for the melt-rich bands forming at 
15�. In
experiments, segregation occurs and bands stabilize at low
angles in samples deformed at very different stress levels,
from low stresses well within the diffusion creep-dominated
regime, to higher stresses within the dislocation creep
regime. Although all samples developed an olivine fabric
(implying that dislocation creep was active), the experimen-
tal samples had a range of effective stress exponents, from 1
to >4.5, consistent with the stress conditions. Therefore, the
segregation and organization are not sensitive to the stress
exponent in the matrix, favoring the viscous anisotropy
mechanism.
[59] However, there are complications in applying the

results of the linear stability analysis directly to the experi-
ments. At strains >1, the grain-scale melt alignment was
closer to the case B form (22.5� to the shear plane) than the
case A end-member (45�). As shown in Figure 12, case B
anisotropy tends to favor the stability of the higher angle
bands. Therefore, we conclude that at onset of deformation,
the initial melt pocket orientation is closer to case A, and the
anisotropic viscosity is the predominant cause for band
formation. We suggest that, as the system evolves, other
processes come into play that tend to enhance strain locali-
zation in the bands and favor the low angles. These processes
could include stress-dependent (non-Newtonian) mecha-
nisms as discussed byKatz et al. [2006] and the requirements
for steady state strain partitioning [Holtzman et al., 2005].
[60] Although the present theory is based on viscous

rheology insensitive to confining pressure, the obtained
low-angle localization is phenomenologically similar to
localization that occurs in dilatent granular or brittle/
frictional materials in a wide range of mechanical regimes
(often called ‘‘Reidel shears’’ [e.g., Schmocker et al.,
2003]). It seems worth investigating whether there is a
universality to the low-angle localization, and that interac-
tions between a wide range of mechanisms find a similar
balance between shear and normal stresses.

7. Discussion

[61] The present results, showing the occurrence of melt
migration up stress gradients and the formation of low-angle
melt rich bands, demonstrate the significant effects of
viscous anisotropy on melt migration dynamics: stress-
induced melt alignment at the grain scale drives further
melt redistribution over distances much longer than the
grain scale. While spontaneous segregation into melt-rich
bands occurs over distances smaller than the compaction
length, melt migration up stress gradients can occur over
distances greater than the compaction length. These two
mechanisms imply the development of multiscale rheolog-
ical structure, ranging from grain scale to mesoscale or
global scale. (Schematic illustrations and terminology for
multiscale structure are presented in Figures 12 and 14 of
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TH1.) In sections 5 and 6, we considered only initial
evolutions or small perturbations of the porosity structures
to obtain exact and self-consistent solutions. Here, by
introducing several assumptions and approximations, we
discuss the geodynamical applications and implications of
the present results.

7.1. Effective Viscosity and Lubrication

[62] In this study, for mathematical simplicity, we have
compared the influence of deformation on melt migration in
two simple and definable systems: the initial evolution of
porosity in rotary shear and the growth of small perturba-
tions of porosity in simple shear. In so doing, we have
analyzed in detail the influence of deformation on melt

migration, but not the feedbacks from the evolving melt
distribution to the boundary conditions or effective viscosity
of the system. For example, as melt migrates up a stress
gradient, it modifies the viscosity structure internal to the
system. In the constant torque system discussed in section 5,
viscosity reduction in the inner radii causes strain localiza-
tion, which will feedback to the boundary conditions; the
velocity will increase to maintain a constant torque. This
increase in velocity is quantified as an effective viscosity,
and the process referred to as lubrication. Such lubrication
may occur in various settings in the Earth, with significant
dynamic consequences. Solving the fully nonlinear time-
dependent problem is beyond the scope of this study, but
here we present a simple snapshot view of the effective
viscosity of an evolved system in which melt has segregated
toward a boundary. Determining an effective viscosity for
the melt-rich band structures at an angle to the shear plane is
difficult because the partitioning of stress and strain must be
considered [e.g., Holtzman et al., 2005]. This problem is left
for future studies. Here, we discuss the effective viscosity of
the rotary shear model.
[63] We consider a concentric structure consisting of

two homogeneous parts with porosity fin and viscosity hin
at a � r � c and fout and hout at c � r � b, where the inner
part has larger porosity (Figure 13a). This structure reflects
the consequence of melt migration up stress gradients in the
solid matrix. For simplicity, the viscosity within each part is
assumed to be isotropic. For comparison, we also consider a
simple shear of the system consisting of two homogeneous
parts with fin and hin at 0� y� c and fout and hout at c� y� b
(Figure 13b). Let Sin and Sout be the areas of the inner and
outer parts and let Stotal be Sin + Sout. Let �f be average
porosity, which is defined by Stotal�f = Sinfin + Soutfout.
Effective viscosity, heff, for rotary or simple shear is
given as

Rotary shear

heff
�h

¼ �h�1c2ðb2 � a2Þ
h�1
in b2ðc2 � a2Þ þ h�1

outa
2ðb2 � c2Þ

ð56aÞ

Simple shear

heff
�h

¼ �h�1b

h�1
in cþ h�1

outðb� cÞ
ð56bÞ

where �h represents the viscosity of the homogeneous system
with �f. In TH1, shear viscosity is obtained as a function of
grain boundary contiguity 8 as h = 0.2hcc8

2, where 8 is
related to melt fraction f as 8 = 1 � Af1/2 with A = 2–2.3.
Here, we use the result of the contiguity model rather than
the exponential dependence used in section 6, because the
viscosity at large f is better described by the contiguity
model. With A = 2.3, both contiguity 8 and viscosity h
become zero at f = 0.189. This is realistic, because
viscosity at 8 = 0 is controlled by the liquid viscosity, which
is negligibly small compared to the solid viscosity. The melt
fraction corresponding to 8 = 0 (f = 0.189 for A = 2.3) is
sometimes called the rheologically critical melt fraction
(RCMF). (Not to be confused with fc of TH1 and TH2.)
[64] Figures 13c and 13d show fin versus fout and heff

versus fout for various values of Sin/Stotal, where �f is fixed

Figure 12. (a) Growth rate ds/dt versus q at t = 0
calculated for anisotropic geometry of cases A, B, and C
(Figures 2c–2e) and two intermediate cases between A and
B (labeled A0 and A00). (Q1, Q2) = (0.1,0.3) for A, (0.13,
0.27) for A0, (0.16, 0.24) for A00, (0.2, 0.2) for B, and (0.3,
0.1) for C, where Q3 = Q4 = 0.3 for all cases. These
correspond to the melt alignment at 45� (A), 38� (A0), 31.5�
(A00), 22.5� (B) and 0� (C) angles to the shear plane.
(b) Amplitude es versus q at t = 2, where amplitude is
normalized to the maximum value of each line. Low-angle
bands develop for A and A0, and high-angle bands develop
for A00, B, and C.
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to be 0.02. The heff is dominantly influenced by the smaller
viscosity, hin. Therefore, as fin approaches 0.189, hin
approaches zero and heff accordingly decreases toward zero,
illustrating the process of lubrication. Figure 13d shows that

the lubrication significantly depends on Sin/Stotal, which
describes the spatial localization of the segregation. The
result of section 5 shows that the configuration of segrega-
tion is controlled by the ratio of the magnitude of the spatial
scale of the shear stress gradient (b) and the compaction
length (dc); by roughly approximating Sin and Sout by the
areas where decompaction and compaction occur, respec-
tively, Sin/Stotal is estimated as 0.38 for dc/b = 0.5, 0.047 for
dc/b = 0.01, and 0.008 for dc/b = 0.001. The detailed
configuration of segregation may also be affected by the
dependence of anisotropy on the shear stress amplitude.
Figure 13d shows that because of the heterogeneity in
stress, the lubrication effect on heff at a given fout is larger
for the rotary shear (solid lines) than for the simple shear
(dotted lines).
[65] These results indicate the importance of further

investigating the effects of melt migration up stress gradients
for realistic material properties and geological settings. In
section 7.2, we discuss melt migration up stress gradients in
the context of the mantle at ridges and subduction zones.

7.2. Geodynamic Consequences of Anisotropic
Viscosity and Lubrication

[66] Previous studies on the two-phase dynamics of
partially molten regions have been performed only for
isotropic viscosity. Even for an isotropic viscosity, fully
solving the solid-liquid two-phase dynamics is not an easy
task. In order to estimate fluid flow at ridges and subduction
zones, Spiegelman and McKenzie [1987] proposed a simple
model in which the liquid pressure gradient is calculated
from equation (29) using analytical solutions of vS obtained
under the assumption of constant porosity. We applied their
simple model to the rotary shear system with anisotropic
viscosity and showed that, when dc/b � 1, liquid pressure
gradient can be closely approximated by the simple model
(section 5.4.2). Here, by considering that the compaction
length is much smaller than the spatial scale of the mantle
flow, effects of viscous anisotropy on melt streamlines are
estimated by the simple model.
[67] The flow of mantle at spreading centers and subduc-

tion zones is modeled by 2-D corner flow which can be
solved analytically with isotropic viscosity [e.g., Spiegelman
and McKenzie, 1987]. We estimate melt streamlines at both
settings by approximating solid velocity vS with these
analytical solutions, in combination with the viscosity tensor
calculated for stress-induced anisotropy of case A. Similar to
the rotary shear system, stress and strain rate of the corner
flow with isotropic viscosity have only rq (and qr) compo-
nents. So, as discussed in section 5.4.2, the viscous consti-
tutive relation given by equation (17) is used. Further details
of the calculation are presented in Appendix C.
[68] The melt and matrix streamlines at ridges and sub-

duction zones are shown in Figures 14 and 15. In Figures 14
and 15, length, time, and stress are normalized to L, L/U0,
and h0U0/L, respectively, where U0 is half spreading rate or
subduction rate and h0 is isotropic shear viscosity of the
matrix. L is defined by (C5) and is estimated as about 3–
30 km for h � z1 = 1019–1021 Pa s (Appendix C). With
isotropic viscosity, melt streamlines near the spreading
center are focused on the singular point (dotted lines in
Figure 14b), while with anisotropic viscosity, the stream-

Figure 13. (a, b) Rotary and simple shear models
consisting of the two parts characterized by porosity fin

and area Sin (darkly shaded region) and fout (<fin) and Sout
(lightly shaded region). (c) The parameter fin versus fout for
various Sin/Stotal, where average melt fraction is fixed to �f =
0.02. (d) Effective viscosity for rotary shear model (solid
lines) and simple shear model (dotted lines), normalized to
the viscosity corresponding to �f = 0.02.
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lines curve outward (solid lines in Figure 14b), because the
large shear stresses along the dipping plate boundary (dark
region in Figure 14a) pull melt toward the boundary. A
similar result is also obtained for the subduction model.

With isotropic viscosity, liquid can migrate upward from the
slab surface due to the dominant effect of buoyancy force
(dotted lines in Figure 15b). However, with anisotropic
viscosity, the liquid is attracted to the surface of the
subducting slab due to migration up stress gradients (solid
lines in Figure 15b).
[69] What are the implications of these simple solutions

for the complex dynamics of the mantle at the spreading and
convergent plate boundaries? In both cases, the melt
attracted to the plate boundaries is expected to reduce
viscosity and lubricate the plate motion. Because viscosity

Figure 14. Effects of anisotropic viscosity on melt flow in
a mid-ocean ridge model. (a) Solid streamlines (solid lines)
with circles showing the position at every normalized time
step 4 starting from z/L = 6. Amplitude of shear stress (srq

B)0
is shown by the gray scale with a contour of 0.5 (dotted
lines). (b) Melt streamlines estimated for isotropic viscosity
(dotted lines) and for anisotropic viscosity (solid lines).
Circles show the position at every normalized time step 0.4
starting from z/L = 6. Spreading center is at the origin.
Factors used for normalization of length, time, and stress are
given in the text.

Figure 15. Effects of anisotropic viscosity on melt flow in
a subduction zone model. (a) Solid streamlines (solid lines)
with circles showing the position at every normalized time
step 10 starting from x/L = �11. Amplitude of shear stress
j(srqB)0j is shown by the gray scale with a contour of 0.5
(dotted lines). (b) Melt streamlines estimated for isotropic
viscosity (dotted lines) and for anisotropic viscosity (solid
lines). Circles show the position at every normalized time
step 1 starting from the surface of the subducting plate. The
s3 direction at q = 0� (surface) and q = 30� (slab surface) is
shown in Figure 15b. Factors used for normalization of
length, time, and stress are given in the text.
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reduction changes the matrix stress field and hence affects
the melt streamlines, dynamic approaches that take into
account interactions or feedbacks between melt migration
and mantle flow should be performed in future studies.
Although we considered a passive corner flow model for
simplicity, buoyancy force of the upwelling mantle provides
an additional driving force, especially at spreading plate
boundaries. The driving forces of the plate motion affect the
stress field and hence affect the melt migration patterns.
Therefore, dynamic approaches with realistic driving forces
are important. The occurrence of lubrication may be tested
by the observation and characterization of seismic low-
velocity zones and/or seismic anisotropy. The possible
occurrence of lubrication and its seismological detectability
in the suboceanic upper mantle are discussed by TH1. In
subduction zones, the degree and depth of decoupling (or
lubrication) between the subducting plate and the mantle
wedge exerts a primary control on the thermal structure of
the mantle wedge [e.g., Furukawa, 1993] and with a more
macroscopic view, the fundamental asymmetry of the sub-
duction geometry [Gerya et al., 2008]. Many subduction
zones exhibit low-velocity waveguides several kilometers
thick in the vicinity of the Wadati-Benioff zone and the slab
interface [e.g., Abers, 2005]. Their origin is not clear, but
slab-derived fluids and possibly melts could be responsible
for their low seismic velocities. In experiments, stress
causes a similar alignment of aqueous fluids in an ultra-
mafic matrix [Hier-Majumder and Kohlstedt, 2006] as is
observed in partially molten ultramafic systems. If the
presence and alignment of fluids have similar effects on
the rheology of the systems of ultramafic matrix/aqueous
fluids at mantle wedge conditions, then the coupling be-
tween shear and isotropic stresses developed here could
occur in such systems. In the Earth’s mantle, dislocation
creep is also an important deformation mechanism, so a
relevant viscous constitutive relation should incorporate it.
Effects of aqueous fluids should also be considered in future
studies.

8. Conclusions

[70] With viscous anisotropy, the influence of shear
deformation on melt migration significantly increases, be-
cause viscous anisotropy causes a direct coupling between
shear and isotropic components, which does not occur with
isotropic viscosity. Significant consequences of this cou-
pling are demonstrated by two simple models: the occur-
rence of melt migration up stress gradients in the solid
matrix was demonstrated by a rotary shear model; the
formation of melt-rich bands was demonstrated by linear
stability analysis of a simple shear model, with results
consistent with experimental observation. Effects of viscous
anisotropy on melt migration was demonstrated in two
geological settings by approximating mantle flow at spread-
ing centers and subduction zones with analytical solutions
for corner flow. Migration of melt up stress gradients may
drive segregation toward the lithosphere-asthenosphere
boundary and slab surface in ridges and subduction zones,
respectively.
[71] Stress-induced melt alignment at the grain scale

causes viscous anisotropy, which further drives melt redis-

tribution over distances greater than the grain scale. The
present study demonstrates the development of such multi-
scale anisotropy by forward or ab initio approaches based
on the governing equations of two-phase dynamics. While
spontaneous segregation into melt-rich bands occurs over
distances smaller than the compaction length, melt migra-
tion up stress gradients can occur over distances greater than
the compaction length. The viscous macroscopic constitu-
tive relation based on realistic microstructures and grain-
scale rheology plays an important role as a bridge between
microscopic and macroscopic processes. The development
of multiscale structures can cause both increased perme-
ability and significant weakening and lubrication at geo-
dynamic scales. In addition to the viscous constitutive
relation in the regime of grain boundary diffusion creep
derived in this study, further studies are needed for dislo-
cation creep, where viscous anisotropy can be produced not
only by grain-scale melt alignment but also by lattice
preferred orientation (LPO).

Appendix A: Anisotropic Viscosity for
Incompressible Flow

[72] The viscous constitutive relation for incompressible
flow in two dimensions is generally written as

sB
xx �

sB
xxþsB

yy

2

sB
yy �

sB
xxþsB

yy

2

sB
xy

sB
yx

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

D1 þ D2 D2 D3 D3

D2 D1 þ D2 �D3 �D3

D3 �D3 D4 D4

D3 �D3 D4 D4

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

_efxx

_efyy

_efxy

_efyx

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

ðA1Þ

where _exx
f + _eyy

f = 0 and D2 in the matrix is an arbitrary
constant. An important difference between equation (9) and
equation (A1) lies in the off-diagonal quadrants, which
negates the possibility of coupling between shear and
isotropic components.

Appendix B: Model of Katz et al. [2006]

[73] Here, we present the model of Katz et al. [2006]
developed for the system with isotropic and nonlinear
viscosity. Our rederivation gives a growth rate which is
quantitatively different from that of Katz et al. [2006].
[74] Using the notations of this present study, the non-

linear flow law reported from experimental studies can be
written as

_efxy ¼ celf
sB
xy

m

�����
�����
n�1

sB
xy

m
; ðB1Þ
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where m and c are constants with dimensions of Pa and s�1,
respectively, and l ’25–37 [Mei et al., 2002; Zimmerman
and Kohlstedt, 2004]. Equation (B1) can be rewritten as

sB
xy ¼ me�

l
n
f
_efxy
c

�����
�����
1
n
�1

_efxy
c
: ðB2Þ

For a small perturbation in melt fraction, f = f0 + �f1,
equation (B2) becomes

sB0
xy þ �sB1

xy ¼ sB0
xy 1� �

l
n
f1 þ �

1� n

n

_ef 1xy
_ef 0xy

þ �
_ef 1xy
_ef 0xy

 !
: ðB3Þ

Because the perturbation in stress can be expressed using
linearized viscosity, h = h0 + �h1, as

sB0
xy þ �sB1

xy ¼ sB0
xy 1þ �

_ef 1xy
_ef 0xy

þ �
h1

h0

 !
; ðB4Þ

by comparing equations (B3) and (B4), we obtain

h1

h0
¼ �l

n
f1 þ 1� n

n

_ef 1xy
_ef 0xy

: ðB5Þ

Through the comparison between equation (B5) and
equation (S10) of Katz et al. [2006], we can see that the
parameter a used by Katz et al. [2006] corresponds to �l/n.
[75] Decompaction C and rotation W for the non-

Newtonian model can be obtained from the same equa-
tion as equations (47) and (54) by replacing Dij with

D11 ¼ 4 1�n
n
n2xn

2
y

D12 ¼ D21 ¼ 2 1�n
n
nxnyðn2y � n2xÞ

D22 ¼ 1�n
n
ðn2x � n2yÞ

2;

8>>>><
>>>>:

ðB6Þ

which vanish when n = 1. Then, the growth rate ds/dt is
obtained as

ds

dt
¼ 2

l
n
� ð1� f0Þnxny
x0þh0
h0 1þ 1

K2

� �
1þ 1�n

n
ðn2x � n2yÞ

2
� �

þ 1�n
n
4n2xn

2
y

;

ðB7Þ

which is equal to the result of Katz et al. [2006, equation
S23], if l/n = �a. (As discussed in section 6.1.2, a slight
difference of factor h0/(x0 + h0) in equation (B7) from x = h0/
(z0 + 4h0/3) from Katz et al. [2006] comes from our use of
the viscous constitutive relation derived in two dimensions.)
[76] Equation (B5) shows that as the nonlinearity n

increases, the porosity weakening effect given by the first
term of the right-hand side decreases as l/n. Although Katz
et al. [2006, equation S10] used �a = 27 even for n = 6, our
result shows that �a is 
7 for n = 4 and 
5 for n = 6. The
values of a = �27 and n = 6 used in Katz et al. [2006]
overestimate the effect of melt fraction. Amplitude es(q,t)

versus q is shown in Figure B1, where the results of the
model of Katz et al. [2006] are shown for the parameter
values similar to their original values (solid lines) and for
the values corrected for the overestimation (dotted lines).

Appendix C: Melt Streamlines in the Corner
Flow Ridge and Trench Models

[77] In the simple model developed by Spiegelman and
McKenzie [1987], solid velocity vS is approximated by the
analytical solutions for passive corner flow. For the ridge
model, vS is given by

vSr
U0

¼ CR cos q� DRðcos q� q sin qÞ

vSq
U0

¼ �CR sin qþ DRq cos q;

8>>><
>>>:

ðC1Þ

where CR = 2 sin2 a/(p � 2a � sin 2a) and DR = 2/(p � 2a
� sin 2a) for wedge angle a, and U0 is the half spreading
rate [Spiegelman and McKenzie, 1987]. For the trench
model, vS is given by

vSr
U0

¼ CTq sin qþ DT ðsin qþ q cos qÞ

vSq
U0

¼ �CT ðsin q� q cos qÞ � DTq sin q;

8>>><
>>>:

ðC2Þ

where CT = b sin b/(b2� sin2 b) and DT = (b cos b � sin b)/
(b2 � sin2 b) for wedge angle b, and U0 is the subduction
rate [Spiegelman and McKenzie, 1987]. Coordinate systems
are defined in Figures 14 and 15, where q is defined
differently between the twomodels. The strain rate calculated
by substituting equation (C1) (or (C2)) into equation (4) has
only rq (and qr) component ( _err

f = _efqq = 0). In the cylindrical
coordinate system, equation (16) is written as

@pL

@r ¼ ðsB
rr þ pLÞ;r þ 1

r
sB
rq;q þ

sB
rr�sB

qq
r

þ �rgr

1
r
@pL

@q ¼ sB
rq;r þ 1

r
ðsB

qq þ pLÞ;q þ 2
r
sB
rq þ �rgq;

8><
>: ðC3Þ

Figure B1. Amplitude es versus q at t = 1 and 3, predicted
from the model of Katz et al. [2006] and from the model of
this study (thick lines). Amplitude is normalized to the
maximum value at each t. The results of the model of
Katz et al. [2006] are shown both for the parameter values
similar to their original values ((1 � f0)l/n = 25, n = 6, and
x0/h0 = 10; solid lines) and for the modified values ((1 �
f0)l/n = 25/6, n = 6, and x0/h0 = 10; dotted lines).
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where gr and gq are the r and q components of the
gravitational acceleration. By substituting equations (15)
and (17) into equations (C3) and by using _efrr = _efqq = 0, liquid
velocity vL is obtained as

vLr
U0

¼ vSr
U0

� w
U0

gr
g
þ wL2
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0
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r
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2 _efrq g;r þ 1
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gðh� z1Þ;r � 1
r
ðh� z1Þ;q

n oh i
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U 2
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n oh i
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8>>>>>>>>><
>>>>>>>>>:

ðC4Þ

where w and L are given by

w ¼ kfð1�fÞDr g
hLf

L ¼ U0ðh�z1Þ
ð1�fÞDr g

� �1=2
:

8><
>: ðC5Þ

For U0 = 7.5 cm a�1, Dr = 300 kg m�3, g = 9.8 m s�2, f =
0.03, h � z1 = 1019–1021 Pa s, L is estimated as about 3–
30 km.
[78] Let (sB

rq)0 be the shear stress field of the corner flow
with isotropic viscosity, which is given by (sB

rq)0 = h0 _e f
rq

by using h0 defined in section 3.4. The g and h � z1 are
given by smooth functions of (sB

rq)0 as

g ¼
gsat sin

p
2

ðsB
rqÞ0
ssat

� �
at jðsB

rqÞ0j � ssat

gsat
ðsB

rqÞ0
jðsB

rqÞ0 j
at jðsB

rqÞ0j > ssat

8><
>: ðC6Þ

and

h� z1
h0

¼
1�csat

2
cos p ðsB

rqÞ0
ssat

� �
þ 1þcsat

2
at jðsB

rqÞ0j � ssat

csat at jðsB
rqÞ0j > ssat;

8<
: ðC7Þ

where (sB
rq)0 can be both (sB

rq)0 � 0 and (sB
rq)0 < 0, and ssat

(>0) represents the saturation limit above which the
anisotropy becomes independent of the stress magnitudes.
Using the result shown in Figure 4, gsat = 0.988 and csat =
0.51. Substituting equations (C1) (or (C2)) and (C6)–(C7)
into equations (C4), melt streamlines shown in Figures 14
and 15 are obtained. In Figures 14 and 15,a = b = p/6,w/U0 =
1.91, and ssat/(h0U0/L) = 0.03 are used. With this value of
ssat, stress-induced anisotropy is saturated in most parts
of the domain except for the vicinity of the region of
(sB

rq)0 = 0, which extends along a line of q = 0 in the ridge
model and a line of q = 0.178 rad in the trench model. The
patterns of streamlines discussed in section 7.2 are not
sensitive to the value of ssat.
[79] Although equation (17) corresponding to the anisot-

ropy of case A is used in deriving equations (C4), because
_err
f = _efqq = 0, the same result is obtained from equation (9).
Therefore, similar streamlines to Figures 14 and 15 can be
obtained for both cases A and B.
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