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Abstract

As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the
bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive
alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial
communities with a particular emphasis on open challenges and opportunities in environmental sustainability
and human health. We next provide a critical overview of mathematical approaches, ranging from
phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution
of microbial ecosystems. Finally, we present our outlook on key aspects of microbial ecosystems and
synthetic ecology that require further developments, including the need for more efficient computational
algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving
gene function annotation, and the value of a standardized library of well-characterized organisms to be used
as building blocks of synthetic communities.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Synthetic ecology of microbes is concerned with
the design, construction and understanding of
engineered microbial consortia [1]. It is a young,
fast-developing research area, clearly distinct from
synthetic biology, though related to it in a number of
ways. Why would one want to engineer new
microbial communities? How would engineered
communities differ from natural ones? And how
could one hope to design a community with desired
properties, other than by tinkering with their intracel-
lular circuits, or by mixing different species, based on
experience and intuition? Here, we delve into these
questions by discussing several examples of prior
work in this area, and by presenting an overview of
the growing landscape of mathematical approaches
aimed at understanding the function, dynamics and
evolution of microbial ecosystems, and at enabling
the rational design of new microbial consortia.
Authors. Published by Elsevier Ltd. This
rg/licenses/by-nc-nd/4.0/).
The idea of designing microbial consortia is
inspired by the ubiquitous presence of microbial
communities on our planet, and the key role that
these communities play in many aspects of human
life. Microbial communities are implicated in biogeo-
chemical cycles [2] and human health [3], and have
been enlisted for a wide array of biotechnological
applications, ranging from the ancient arts of brewing
and cheese-making [4] to recent efforts towards the
overproduction of biofuels and chemicals [5,6] and
wastewater treatment [7,8]. Engineering novel
microbial communities may involve inducing the
coexistence of unusual combinations of wild-type
organisms, or constructing ecosystems of genetically
modified species, thus creating a continuum of
possible strategies between synthetic biology and
ecology.
Oneof the appeals of synthetic ecology is that itmay

enable us to perform novel tasks by understanding
and embracing – rather than avoiding - properties that
is an open access article under the CC BY-NC-ND license
J Mol Biol (2016) 428, 837–861

mailto:dsegre@bu.edu
http://dx.doi.org/Ali R.Zomorrodi1SegreDanielSegr�123Ndsegre@bu.edu1Bioinformatics Program, Boston University, Boston, MABioinformatics Program, Boston University, Boston, MA2Department of Biology, Boston University, Boston, MADepartment of Biology, Boston University, Boston, MA3Department of Biomedical Engineering, Boston University, Boston, MADepartment of Biomedical Engineering, Boston University, Boston, MANCorresponding author at: 44 Cummington Mall, LSEB 909 Boston, MA 02215, USA.44 Cummington Mall, LSEB 909BostonMA02215USA
http://dx.doi.org/


838 Review: Synthetic Ecology of Microbes
are inherent in the natural microbial world, such as
diversity, competition for resources, division of labor
and obligate interdependence. A community of
organisms may perform tasks that no individual
species could possibly perform on its own (i.e., from
a functional perspective, a community ismore than the
simple sum of its parts [9]). Moreover, relative to
monocultures, engineered communities may achieve
increased stability and resilience [10]. The emergence
of community-level properties is a result of interactions
among different species. Inter-species interactions
are one of the primary factors shaping the structure,
function and dynamics of microbial communities and
are believed to play a key role in the emergence of
biodiversity [11,12]. Interactions among species can
bemediated by a complex web of diffusible chemical
signaling molecules and/or metabolites [13–15] or
by direct contact with neighboring microorganisms
[16–18]. These interactions can be obligatory or
(b) Genetic engineering
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Fig. 1. Examples of variousmechanisms for establishing
a syntheticmicrobial community. Dashedand solid arrows in
(a), (b) and (d) denote interspecies metabolite exchanges
and export of metabolites/export of metabolites by the
community, respectively. (a) Co-culturing wild-type species
under conditions resembling naturally occurring environ-
ments. An example is the association between sulfate-redu-
cing bacteria and methanogens. Here a sulfate-reducing
bacterium utilizes lactate as the sole carbon source and
produces acetate/formate, which is used by a methanogen
that is incapable of using lactate. The methanogen bacteria
scavenge hydrogen in return thereby providing a thermody-
namically favorable condition for the growth of sulfate-redu-
cing bacteria [25,28]. (b) Using genetically engineered
species to induce metabolite exchanges. An example is
the association between two (or more) mutant strains where
each strain relies on its partner for the essential amino acid it
cannot produce on its own [22,23]. (c) Using synthetic
genetic circuits to induce interactions through quorum
sensing. Generally, each species may produce a signaling
molecule that activates or represses the transcription of one
(or more) gene(s) in another species. The example shown
here is a predator-prey system [48], where empty and filled
circles represent signaling molecules 3OC6HSL and
3OC12HSL (synthesized by LuxI and LasI), respectively,
solid arrow denote protein production and dashed arrows
represent activation and inhibition/killing. At low density of
the prey, the predators die due to the constitutive expression
of a killer protein (shown in red). At high concentration of the
prey, 3OC6HSL activates LuxR in predators, which in turn
induces the expression of an antidote gene (shown in green)
thereby rescuing the predators. At the same time,
3OC12HSL (produced by predators) activates LasR in
preys, which induces the expression of a killer protein. (d)
Using environmental manipulation to induce interactions in
microbial communities. Here, we show a hypothetical
example, where each microorganism can grow on its own
in the presence of glucose and ammonium. However, in the
absence of these two compounds they rely on each other for
the carbon and nitrogen source as one can only fix nitrogen
and the other can only metabolize lactate. The potential for
such interactions between Desulfovibrio vulgaris and
Methanococcus maripaludis has been reported based on
computational modeling [56].
non-obligatory, beneficial or deleterious.
Beneficial interactions often involve cases where

one or more species feed on products of other
community members [19–21]. In obligatory cooper-
ative (i.e., syntrophic) interactions, individual species
cannot survive in the absence of their partners. For
example, in a cross-feeding interaction, both species
could secrete nutrients essential for the growth of
their partner [22–24]. Alternatively, one species
could rely on the waste product of the other while
maintaining a favorable thermodynamic condition in
return [25–28]. For example, in the absence of a
suitable electron acceptor, methanogens can pro-
vide thermodynamically favorable growth condition
for sulfate-reducing bacteria by scavenging hydro-
gen in the environment while using the fermentation
by-products (e.g., acetate, formate) produced by
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sulfate-reducers [27,28]. Whether obligatory benefi-
cial interactions are abundant in natural communities
is still an open question, potentially relevant for
understanding unculturability of the vast majority of
microorganisms in the laboratory in monocultures
[29]. A common hypothesis is that unculturability of
many species is due to their dependence on other
microbial species for nutrients or growth factors [30].
Negative interactions are ubiquitous in nature too.

In addition to the competition for the same limiting
resource, these interactions include growth inhibition
effects of signaling molecules like bacteriocins, and
active killing through a wide range of antibiotic
mechanisms [31–33]. Moreover, community dynam-
ics can be heavily affected by parasitic interactions
(e.g., between bacteria and their bacteriophage)
[34,35] where the parasite benefits while the host is
negatively affected.
A broad spectrum of applications have driven the

desire to build new communities, ranging from the
conceptual challenge of characterizing small syn-
thetic systems as a gateway towards understanding
the more complex natural ones, to the interest in
achieving a specific biotechnological task (e.g.,
treatment of human diseases, overproduction of
biochemicals and bioremediation of contaminated
environments). Here, we first review some examples
of such efforts and next focus on how mathematical
modeling can complement these empirical efforts to
better understand ecological principles underpinning
the function and dynamics of microbial communities.
We also present an overview of the existing
challenges and future perspectives in synthetic
ecology with a particular focus on the role of
mathematical and computational modeling.
Using synthetic ecology to understand
natural microbial communities

Natural microbial communities often contain tens
to thousands of microbial species [36]. This makes it
challenging to experimentally characterize the iden-
tity of community members, their function and
interactions. A bottom-up approach to address
these limitations is to design synthetic microbial
consortia that could serve as simplified models of
their natural counterparts, while affording enhanced
tractability and controllability. These synthetic sys-
tems would allow one to explore a number of key
ecological and evolutionary questions such as the
impact of interactions and environmental factors on
the emergence, evolution and maintenance of
coexistence. Synthetic microbial consortia can be
established by co-culturing wild-type species in a
growth medium similar to their natural habitat, or they
can be constructed by using targeted genetic
perturbations or design of environmental conditions
that induce new interspecies interactions (e.g.,
through metabolic exchange, antibiotic secretion,
or quorum sensing) (see Fig. 1). Here, we review
some examples of such efforts.
Artificial consortia composed of wild-type species

grown in a medium resembling their natural habitat
have been established to gain a deeper understanding
of the community properties. An example is co-cultur-
ing methanogens and sulfate-reducing bacteria to
better understand methane production and mutualistic
interactions in subsurface anaerobic environments,
as noted earlier [25,27,28]. Artificial consortia with
wild-type species have also been used to elucidate the
biodiversity-function and biodiversity-stability relation-
ships in natural microbial communities [37–40]. For
example, Von Canstein et al. [37] found that increasing
the diversity of microbial species in a biofilm improves
the mercury removal efficiency in a changing environ-
ment. Assessing the stability of synthetic bacterial
communities of different diversities (ranging from one
to 12 members) showed that the biomass of more
diverse communities are stabilized against (i.e., less
affected by) abiotic perturbations such as addition of
heavy metals, NaCl and warming [40]. While the
majority of studies focused on the impact of richness
(the number of species),Wittebolle et al. [41] examined
the impact of initial community evenness (relative
abundance of species) using eighteen different deni-
trifying bacterial species from four different phyla and
microbial microcosms. This study demonstrated that
the initial evenness is a key determinant of the
functional stability of the community.
For cases where establishing a consortium is not

possible with wild-type species, a common strategy is
to implement defined genetic perturbations, which can
create new inter-species interactions through metabo-
lite exchange or antibiotic production [22,23,42–47]. In
one of the first examples, Shou et al. [46] created a
consortium of two cross-feeding auxotrophic yeast
mutants. By using 14 knockout strains of Escherichia
coli, each lacking a gene responsible for the production
of an essential amino acid, Mee et al. [23] constructed
communities of increased complexity (from two- to
14-member) in order to assess the impact of synthetic
cross-talk between the mutants on population dyna-
mics and stability (see Fig. 1b). In another study,
Harcombe [43] used a synthetic two-species system
composed of Salmonella enterica and an Escherichia
coli mutant unable to synthesize an essential amino
acid to elucidate the mechanisms and evolutionary
origins of cooperation between unrelated species. This
study concluded that cooperation can evolve under
two conditions, namely the presence of a preexisting
reciprocation mechanism and the preferential availabi-
lity of reciprocation to cooperative phenotypes.
Using synthetic genetic circuits to induce new

interactions through quorum sensing has been also
widely used to establish synthetic microbial commu-
nities [48–54]. For example, in order to assess
experimentally the relation between the parameters
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of Hamilton’s rule (a mathematical model for the
emergence andmaintenance of cooperation [55]) and
the quantities that govern the behavior of a microbial
ecosystem, Chuang et al. [50] engineered two
producer and non-producer populations of E. coli,
where producers synthesize the growth-enhancing
Rhl autoinducer molecule as the common good. This
autoinducer activates the expression of an antibiotic
resistance gene in both producers and non-produ-
cers. This study showed that the nonlinearity of the
growth benefit as a function of the common good
tends to limit the predictive accuracy of the Hamilton’s
rule [50]. In another study, a population-driven
synthetic quorum sensing switch was engineered to
enable the dispersal of a second cell type into an
existing colonizer biofilm, the subsequent formation of
a robust two-species biofilm and finally the displace-
ment of the initial colonizers [53]. Rather than using
genetic circuits that modulate gene expression in
independent cells through quorumsensing, Chen et al.
[54] recently took a different strategy by constructing
a dual feedback oscillator genetic circuit distributed
across two nonisogenic populations of E. coli.
The consortium consists of an “activator” and a
“repressor” E. coli strain, each implementing half of
a dual-relaxation oscillator and communicating
through twoorthogonal signalingmolecules.Emergent
population-level oscillations were observed only when
the two organisms are cultured together [54].
In addition to genetic perturbations, it is known that

appropriate design of environmental conditions can
induceor significantly alter the dynamics and stability of
microbial interactions [56–58]. For example, by using a
microfluidic device controlling the spatial structure and
chemical communication Kim et al. [59] reported the
realization of a stable syntrophic consortium of three
different species of wild-type soil bacteria, where each
species performs a unique function essential for the
survival of the entire community. In another study,
Zuroff et al. [57] showed that by fine tuning the oxygen
transport rate a stabilized mutualism between the
obligate anaerobic Clostridium phytofermentans and
yeast can be established in which yeast protects C.
phytofermentans from oxygen inhibition in return for
soluble carbohydrates released from the degradation
of lignocellulosic material. Another study reported on
the impact of antibiotic levels as a key environmental
factor in shaping a wide range of synthetic interactions
including extinction, mutualism and commensalism
between two E. coli populations [58].
Applications of synthetic ecology in
biomedicine, metabolic engineering
and environmental sciences

The construction of synthetic microbial communi-
ties has been pursued for a number of practical
applications including human health, the production
of chemicals, bioenergy, foods and drugs, and the
mitigation of harmful human-induced environmental
damage. These efforts have been so far mostly
driven by experience and intuition, and by knowl-
edge of the metabolic capabilities and environmental
interactions of different organisms. In the following,
we briefly review some of these application areas.

Human health and disease

Microbial communities that live on or within our body
haveamarked, thoughstill poorly understood, effect on
the physiology and health of the human host and seem
to reliably perform crucial tasks for us. For example, the
human gut microbiota enable the breakdown of
otherwise indigestible polysaccharides and are essen-
tial for the development and homeostasis of the
immune system in the gut and for resistance against
pathogenic bacteria [60,61]. Specific shifts in taxonom-
ic composition (states of “dysbiosis”) of the human
microbiota are known to be associated with an
increasing number of diseases [3]. Previous studies
have reported strong associations between the com-
position of the gut microbiota and several complex
diseases such as obesity and atherosclerosis, diabe-
tes and inflammatory bowel disease [62–67]. On the
other hand, diet, environment and age are also known
to influence the composition and structure of the gut
microbiota [64,68,69]. Similarly to the gut, the oral
cavity is the home for one of the most complex
microbial communities in the human body, forming
highly structured biofilms in the form of dental plaques
[70,71]. These communities are responsible for two
major categories of diseases including dental caries
(tooth decay) and periodontitis (inflammatory and
infectious gum disease) [9,72–74].
While there is a flourishing industry proposing

ways to enhance the health-promoting effects of
certain human-associated microbes, the systematic
validated use of synthetic microbial communities to
cure disease is still at the very early stages of
investigation, with a recognized large potential
impact [75]. For example, the recent advent of
gut-on-a-chip technology [76] lays the foundation to
construct such synthetic communities in order to
facilitate the study of intestinal physiology, digestive
diseases and drug development. Another area
where synthetic ecology can contribute is construct-
ing synthetic microbial consortia helping to shift an
imbalanced microbiota in the human body to the
healthy state. A classical example is treating
Clostridium difficile infection by using fecal microbi-
ota transplant, where fecal bacteria from a healthy
individual are transplanted into a recipient with C.
difficile infection. This method has been reported to
be more effective than using antibiotics (see [77] for
a review). An alternative to using natural communi-
ties from healthy individuals could be to design
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efficient synthetic consortia for the targeted treat-
ment of a wide of range of other microbiota-asso-
ciated diseases.

Consortia-based cell factories

Recent advances in synthetic biology have allowed
researchers to engineer single-species microbial cell
factories for the enhanced production of chemicals
and energy [78–80]. However, the efficient microbial
conversion of complex biological feedstock to desired
Table 1. Examples of consortia-based cell factories to produc

(Ligno)cellulose-degrading species Pentose fermenting species H

Trichoderma reesei Escherichia coli Esc

Trichoderma reese Scheffersomyces stipitis Sa

Clostridium thermocellum Clostridium beijerinckii Clo

Clostridium themocellum and
Clostridium thermolacticum

Clostridium thermolacticum Clo

Clostridium thermocellum Thermoanaerobacter strains
(X514 and 39E)

The
(X5

Clostridium phytofermentans - Ca
Sa
products typically requires multiple different function-
alities. This poses a challenge in engineering mono-
cultures as optimizing a single species for one trait
usually comes at the expense of other traits due to the
existence of tradeoffs in the performance limits of
different functional traits [6,81,82]. These difficulties
have attracted researchers to the challenge of
designing synthetic consortia-based microbial cell
factories with task-specialized species. This “division
of labor” would allow the community as a whole to
perform multiple functions (e.g., utilizing multiple
e biofuel from lignocellulosic material

exose fermenting species Product(s) Reference

herichia coli Isobutanol. Minty et al. [87]

ccharomyces cerevisiae, Ethanol Brethauer
et al. [83]

stridium beijerinckii Acetone, butanol
and ethanol

Wen et al. []

stridium themocellum Ethanol Xu and
Tschirner [85]

rmoanaerobacter strains
14 and 39E)

Ethanol He et al. [86]

ndida molischiana or
ccharomyces cerevisiae cdt-1

Ethanol Zuroff et al. []
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resources) in parallel or serially thereby leading to
enhanced productivity and stability [6,10]. Another
advantage of using consortia-based cell factories is its
inherent compartmentalization, which facilitates the
decrease in cross-reactions and side products [5]. An
example of a complex overproduction task that can be
addressed using multi-species microbial cell factories
is the conversion of lignocellulosic biomass to
biofuels, which involves the hydrolysis of lignocellu-
lose to soluble sugars and subsequently the conver-
sion of these sugars to biofuels or any other product of
interest. There is no knownmicroorganism capable of
performing all these tasks. A possible solution is to
construct a synthetic consortium composed of a
lingnocellulose degrader and another microorganism
to ferment the released sugars to the products of
interest (see Fig. 2 and Table 1). An example of such
approach, among others [57,83–86], is a synthetic
consortia composedof the fungusTrichoderma reesei
secreting cellulase to hydrolyze lignocellulosic
feedstock into soluble saccharides and Escherichia
coli, which converts these saccharides into the
products of interest such as isobutanol [87].
Another challenge in the conversion of lignocellu-

losic biomass to biofuels is that there is no microor-
ganism that can ferment all pentoses and hexoses
produced from the hydrolysis of cellulose. Wild-type
microorganisms either use these sugars sequentially
(e.g., first glucose and then xylose) or are in principle
incapable of utilizing pentoses (such as Saccharomy-
ces cerevisiae). A possible resolution of this issue for
the latter is using synthetic biology techniques to
“knock in” the genes enabling the degradation of
otherwise non-degradable sugars, e.g., introducing
the genes of xylose consumption pathways into S.
cerevisiae [88]. However, these approaches suffer
from the preferential use of sugars, which leads to a
decreased productivity [89,90]. A recently pursued
alternative strategy to avoid all these limitations is the
design of synthetic consortia where each strain
exclusively uses only one sugar [91–94]. For exam-
ple, Xia et al. [94] reported the engineering of a
consortium composed of three substrate-selective E.
coli mutants each capable of metabolizing only
glucose, xylose or arabinose by removing the genes
responsible for the metabolism of the other two
sugars. This consortium was capable of simulta-
neously consuming the mixture of all three sugars. In
another study, both steps of lignocellulose degrada-
tion and the conversion of mixture of sugars to a
product of interest were integrated by using a
co-culture consisting of Clostridium themocellum and
Clostridium thermolacticum [85]. While both species
have multiple de-polymerization enzymes enabling
them to degrade different forms of cellulose, the former
is efficient in catabolizing glucose and the latter is
proficient in pentose degradation. This allowed the
enhanced production of ethanol from cellulose by the
co-culture of both species [85].
Another common limitation associated with using
synthetic biology techniques to assemble novel
metabolic pathways converting a desired feedstock
to a product of interest is that different parts of these
typically long pathways often require specialized
environments or compartments for optimal operation.
A recent study proposed the resolution of this issue by
a division of labor strategy where the long conversion
pathway is divided among multiple community mem-
bers [95]. In this study, the synthetic pathway for the
production of precursors of anti-cancer drug paclitaxel
was divided into two modules one expressed in S.
cerevisiae and the other inE. coli. Neither of these two
organisms can produce the paclitaxel precursors on
their own, however, each provides the best host
environment for part of the pathway they are
harboring. The stable co-culture established by
mutualistic interactions between these two organisms
(where taxadiene, a metabolic intermediate produced
by E. coli, is used and functionalized by yeast)
enabled the enhanced production of a number of
different paclitaxel precursors [95]. A number of other
studies took a similar strategy to achieve higher
production yields of products of interest using two
genetically modified strains of E. coli [96,97]. For
example, Saini et al. [96] reported on the enhanced
production yield of n-butanol from glucose upon the
distribution of the n -butanol production pathway
across two different E. coli strains, one producing
butyrate from glucose and the other producing
n-butanol from butyrate.

Microbial consortia for environmental applications

The importance of using microbial communities for
the bioremediation of contaminated environments
has been known for years as these environments
contain a mixture of multiple different organic wastes
and metals, which cannot be degraded and/or
removed by a single microorganism. Synthetic
microbial consortia have been used as an alternative
to naturally occurring communities to improve and
accelerate the biodegradation of pollutants [98–102].
For example, a co-culture of a genetically engineered
Escherichia coli and a wild-type Ochrobactrum sp.
was established in a laboratory-scale bioreactor to
degrade methyl parathion, a highly toxic pesticide
commonly used for agriculture crop protection [100].
The engineered E. coli strain overproduces methyl
parathion hydrolase converting methyl parathion into
p-nitrophenol,which is a toxic intermediate and serves
as the sole carbon, nitrogen and energy source
for and degraded by Ochrobactrum sp. More recently
a synthetic consortium composed of three fungal
strains Aspergillus lentulus, Aspergillus terreus and
Rhizopus oryzae for the simultaneous removal of
multiple metals and dyes was reported [103]. Even
though the detailed mechanism of inter-species
interactions was not explored in this study, it was
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shown that these fungal species stablywork in concert
by distribution of tasks among different specialized
members, where Aspergillus lentulus removes Cu2+

and Acid Blue 161, Aspergillus terreus removes Cr6+

and Rhizopus oryzae removes Pigment Orange 34.
This synthetic community was reported to be more
efficient in the removal of these metals and dyes
compared to their monoculture counterparts [103].
Bioelectrochemical systems such as microbial fuel

cells have been used to simultaneously degrade
complex organic matter in contaminated environ-
ments and to produce electric power, chemicals and
biofuels [104,105]. Syntrophic microbial consortia
are widely used in microbial fuel cells, where multiple
fermentative bacteria degrade a mixture of complex
organic pollutants and exoelectrogenic microorgan-
isms (typically Geobacter species) rapidly convert
fermentation intermediates into electrical current or
chemicals/biofuels thereby eliminating their feed-
back inhibition on fermentative bacteria [106].
Synthetic microbial consortia have been used to
design more efficient microbial fuel cells [107–113].
A notable example is the study byVenkataraman et al.
[110], which demonstrated that a mutualistic co-
culture of Pseudomonas aeruginosa and Entero-
bacter aerogenes in a bioelectrochemical system
leads to up to 14-fold increase in electric power
generation compared to either of the monocultures.
The mutualistic interactions are mediated by
2,3-butanediol, which is a by-product of glucose
fermentation by E. aerogenes and is subsequently
used by P. aeruginosa. The increased current
production was attributed to the removal of fermen-
tation by-product by P. aeruginosa as well as the
enhanced production of pyocyanin (electron shut-
tles) by P. aeruginosa [110]. A more recent study
addressed the issue that butyrate, which is an
anaerobic fermentation by-product is not directly
used by Geobacter sulfurreducens in anode. A
synthetic consortium composed of two different but
complementary mixed cultures was designed for the
anode to overcome this issue, where one oxidizes
butyrate to acetate and the other (enriched in
Geobacter species) produces electric current by
the consumption of acetate [112]. This synthetic
community led to an enhanced production of electric
current that outperformed the previous naturally
derived communities.
Mathematical modeling and computa-
tional analysis of microbial communities

Despite the growing availability of high-throughput
experimental data (especially metagenomic se-
quences) for a diverse range of complex natural
microbial communities, the full characterization and
understanding of these communities is still a
challenging task. This is partly due to the fact that it
is very difficult, if not impossible, to measure the
extent and direction of inter-species interactions (a
key determinant of community’s function and dy-
namics [11,12]) even using the state-of-the-art
experimental techniques. Furthermore, engineering
synthetic consortia to perform sophisticated tasks for
application areas reviewed above requires search-
ing through a complex web of organisms and
interactions in time and space, which can no longer
be achieved by empirical tinkering. The development
of efficient computational techniques and/or mathe-
matical modeling tools can address some of these
questions and shed light onto the experimentally
inaccessible aspects of microbial communities.
These models are critical in addressing a variety of
ecologically and evolutionary relevant questions
such as quantifying the impact of inter-species
interactions and environmental factors on the emer-
gence of cooperation, coexistence of cooperators
and cheaters and the evolutionary fate of the
communities. More importantly, they can play a
critical role in the rational design of synthetic
consortia for desired applications. In the following,
we review some of the most common techniques for
modeling microbial communities.

Ecological-based modeling

Ecological theories of inter-species interactions

Two important models from theoretical ecology that
have been successfully employed to analyze inter-
species microbial interactions are resource ratio theory
(RRT) and the maximum power principle (MPP). RRT
models the competition between two or more species
for a limiting resource based on the assumption that
the outcome of competition is determined by the ratio
of supply rates of the limiting nutrient(s) [114]. RRT has
been primarily used to model competition [115–118],
but has been extended to account for cooperative
interactions as well [119].
MPP is another interesting model, which relies on

the assumption that all biological systems self-organize
to increase power (i.e., metabolic rate) whenever
constraints allow [120,121]. By comparing model
predictions with experimental observations, DeLong
[122] showed that MPP can successfully predict
various outcomes of competition in two-species
microcosm communities.
In addition to RRT and MPP, a number of other

ecological models and theories have been proposed
recently, which have a great potential for modeling
microbial interactions [123–125]. An example of
such a theory, which offers a new perspective on
the emergence and evolution of costly cooperation in
microbial communities is the Black Queen Hypoth-
esis (BQH) [124]. It posits that cooperation among
species may emerge due to purely selfish traits. The
most important assumption of BQH is that some
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costly microbial functions are often leaky, such that
the resulting public goods can be used by other
species. It further hypothesizes that since these
functions are costly and thus undesirable, adaptive
loss of the corresponding genes may happen in
some species. This inevitably turns some community
members to “helpers” and the rest to “beneficiaries”
and builds an obligatory association between
helpers and beneficiaries. The “black queens” here
refers to these costly functions that most species
strive to avoid, analogous to the queen of spades in
the game Hearts [124]. This theory has the potential
to devise a possible evolutionary path for the
emergence of cross-feeding, whereby leakiness
and gene loss may be followed by the evolution of
costly cooperative traits in beneficiaries to maximize
the production of the vital by-product by the helpers
[125]. Recently, Oliveira et al. [126] examined the
evolution of cross-feeding based on BQH by
developing a ecoevolutionary model that accounts
for multiple secretions by each species, which can
be exchanged among genotypes. They concluded
that the evolution of cooperative exchanges reduces
the community productivity relative to an autono-
mous strain performing all vital functions it needs,
and that this type of cooperative behavior evolves
only under specific demographic regimes character-
ized by intermediate genetic mixing [126].
Population dynamic models

A traditional way of modeling the dynamics of
microbial communities rooted in theoretical ecology
is the use of coupled differential equations describ-
ing the temporal evolution of microbial species
abundances. The most widely-used such model is
the Lotka–Volterra (LV) model, originally developed
for modeling predator-prey dynamics, and later
generalized to model combinations of competitive
and cooperative interactions [127,128]. The gener-
alized LV equations can be written as follows [127]:

dNk

dt
¼ r k þ

XK

k
0 ¼1

bkk 0Nk 0
� �

Nk ; k ¼ 1; 2;…;K ;ð1Þ

where Nk is the abundance of species k, K denotes
the total number of species, rk is the intrinsic net
growth (i.e., growth minus decay) rate and bkk '
denotes the interaction coefficients (or strengths)
measuring the effect of one individual in population
k ' on the growth of one individual in population k,
which can assume a negative, zero or positive value
denoting a negative, neutral, or positive interaction,
respectively. In this form, the generalized LV model
takes into account the impact of the presence or
absence of other species implicitly through the
interaction coefficient, but cannot capture explicitly
indirect interactions through e.g., metabolite ex-
change or quorum sensing [129]. In an attempt
towards addressing this limitation, a recent study
proposed to include in the generalized LV models
the explicit dynamics of exchanged metabolites in a
one-way mutualistic interaction where one species
grows on the waste product of another species
[130]. Generalized LV models (Eq. (1)) have been
used to model bacteria-bacteriophage interactions
[131–133] as well as microbial interactions in the gut
[134,135] and in a cheese microbial community
[136]. For example, Fisher and Mehta [134] used
sparse linear regression to infer interaction coeffi-
cients in a discrete LV model of microbial dynamics
using species abundance data for the gut microbiota
of two individuals. In another effort, the generalized
LV models were extended further to account for the
impact of time-dependent external perturbations
[135]. After using linear regression to infer interac-
tion coefficients, this extended model was used to
computationally assess the impact of infection by
pathogens and antibiotic administration on the
dynamics and stability of the mouse gut microbiota.
It is worth noting that in addition to the LV models,
various other ODE-based models have been used
to describe the dynamics of interacting microbial
populations in different settings [23,87,137–140].
Spatial modeling

Except for laboratory setups, most natural microbial
communities display highly complex spatial structure.
As a result, community interactions and abundances
vary not only with time but also with space due to the
heterogeneity of their habitat, the existence of natural
gradients (e.g. different amounts of oxygen penetrating
through a biofilm), and self-organization properties of
the microbes themselves. For example, a given
resource may be differentially available to a given
species in different spatial locations, thus affecting
significantly the function, stability, dynamics and
evolution of the entire ecosystem. In this case, instead
of ODEs, the dynamics of the system across different
locations is captured by partial deferential equation
(PDE)models. Themostwidely-usedPDEmodel is the
reaction-diffusion equation, which determines the
density of each species at different time points and
different locations in space due to diffusion and
population dynamics [141,142]:

∂Ck

∂t
¼ Dk

∂Ck

∂x
þ ∂Ck

∂y
þ ∂Ck

∂z

� �

þ r k x ; y ; z; t ;C1;C2;…;CKð Þ k ¼ 1; 2;…;K ;

ð2Þ
whereCk is the concentration (or density) of species k
at time t in location (x, y, z), Dk is the diffusion
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coefficient of species k in the medium (measuring
dispersal rate), and rk denotes growth or decline in
population k due to population dynamics, which can
be determined at a given point (x, y, z) in space by
using a population dynamic model like the one
described in the previous section. Note that the first
term in the right-hand side of Eq. (2) determines
dispersal due to diffusion. This equation is thus
reduced to population dynamic models (based on
ODEs) for a homogeneous environment. This same
equation can be used to model the spatio-temporal
variations in the concentration of shared compounds
in a microbial community in which case the term rk
stands for the net production rate of a compound k by
different members of the community.
This class of PDE-based models and their

extensions/simplifications have been used in
conjunction with population-based models to study
a variety of ecological phenomena related to
spatial effects such as range expansion and
diffusion-based spatial patterning [143–148]. For
example, by using a one-dimensional reaction-diffu-
sion equation, Datta et al. [145] successfully
modeled the wave front profiles observed in a
range expansion experiment involving populations
of cooperator and cheater yeast strains. They also
used a similar reaction-diffusion equation to model
the spreading of cooperator and defector alleles and
to analytically derive the velocity of defectors
invading a spatially extended population of cooper-
ators [145]. In a subsequent related study, a spatial
model of a mixed population of cooperators and
defectors coupling changes in both population
density and allele frequencies was developed and
it was shown that cooperators are favored at the
edge of an expanding population, and under certain
conditions, they can spread into new territories faster
than they are invaded by defectors [146]. More
recently, a reaction-diffusion model was used to
construct a model of cross-feeding mutualism that
explicitly accounts for the production, consumption
and diffusion of public goods [148]. Interestingly, this
study showed that while species migration improves
mutualism and stabilizes coexistence, cooperation is
lost beyond a critical diffusivity of public goods.
Furthermore, for the case of unequal diffusivity of
public goods, the species with slower-diffusing
public goods will dominate the co-culture and
destroy cooperation by driving the other species to
extinction.
Game theoretical models

The complex balancing of benefits and costs
associated with inter-species interactions in micro-
bial communities can also be effectively addressed
by using game theory and evolutionary game theory
approaches [45,149–154] (see also [155] for com-
prehensive reviews). Game theory is a general
mathematical framework to model strategic interac-
tions among a number of agents (players) where
the payoff of each agent (i.e., how happy each agent
is) is not only a function of its own strategy (action)
but also a function of other players’ strategies.
The payoffs are mathematically represented as a
(multi-dimensional) matrix whose entries represent
the payoff of each player for a given strategy profile.
This payoff matrix is used to determine the equilib-
rium of the system, a state where no player has any
incentive to deviate from its current strategy given all
other players’ strategies, because no change in
strategy would increase the player’s payoff. In
evolutionary game theory, the payoff of each player
depends not only on the action of other payers but
also on their relative abundances. This payoff is then
used to determine the reproductive fitness of each
player. The most popular way of modeling the
reproduction dynamics of mixed interacting popula-
tions in evolutionary game theory is using the
replicator’s equation [157]:

dxk

dt
¼ f k xð Þ−ϕ xð Þð Þxk ; k ¼ 1; 2;…;K ; ð3Þ

f k xð Þ ¼
XK

k
0 ¼1

akk 0xk 0; k ¼ 1; 2;…;K ; ð4Þ

ϕ xð Þ ¼
XK
k
0 ¼1

f k 0 xð Þxk 0 : ð5Þ

Here, x = [x1, x2, …, xK]
T represents the compo-

sition of the community with xk being the relative
abundance (frequency) of species k, fk(x) is the
fitness of species k, ϕ(x) denotes the average fitness
of the community and akk ' represents the payoff of
species k confronting species k ' (extracted from the
payoff matrix of the game). According to Eq. (3), the
frequency of species k increases, decreases or
remains constant, based on whether its fitness is
greater than, less than or equal to the average
fitness, respectively. Even though this model does
not explicitly capture the emergence of new pheno-
types due to mutation, it is usually used to assess
whether a pre-specified mutated phenotype can
invade an existing phenotype. It has been shown
that the replicator equation for a game with K
strategies can be transformed into the generalized
LV model with K − 1 species [157]. This alludes to a
fundamental link between evolutionary game theory
and theoretical ecology.
A prominent example of modeling microbial interac-

tions using game theory is the work by Gore et al. [45].
They experimentally assessed and modeled the
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outcome of interactions between a wild-type coopera-
tor strain of Saccharomyces cerevisiae, which pro-
duces the invertase enzyme to hydrolyze sucrose and
converts it to glucose and fructose, and a cheater
mutant strain of S. cerevisiae, which benefits from the
sugars resulted from sucrose hydrolysis but does not
endure the cost of producing invertase. In this work,
instead of assuming that fitness is a linear function of
the relative abundance of species (see Eq. (4)),
experimental data were used to formulate a fitness
function that depends nonlinearly on the relative
abundance of both species, and on the production
cost of invertase. This nonlinear model could explain
the experimentally observed coexistence between
cheaters and cooperators, which is the reminiscent of
a classical game theory scenario, termed the snowdrift
game. In another study, the dynamics of a game
between two bacterial species competing for a limiting
resource in a fluctuating environment was captured by
anextension of the LVmodel that allows switching from
one species (strategy) to another [150]. Each species
was assumed to take either of the two strategies
constant (environment-insensitive) growth and sus-
ceptible (environment-dependent) growth. This analy-
sis showed that the constant growth strategies always
outcompete or evenly match with its competing
strategy. Despite the limitations associated with
quantifying the payoffs in biological systems, game
theory and evolutionary game theory remain an
attractive mathematical tool to model microbial inter-
actions. For example, they can be used to assess
whether an engineered microbial consortium for a
desired biotechnological application can be invaded by
cheaters, or to determine the range of environmental
conditions where cheaters are dominated by or coexist
with cooperators (e.g., see [158]).
It is worth noting that game theory/evolutionary

game theory models were also extended to capture
the impact of spatial structure by assuming that game
players are located on the vertices of a non-complete
graph and preferentially interact only with their
neighbors [157]. This approach was recently used to
investigate the emergence and fate of cooperation in
“diffusible public good dilemmas” in microbial com-
munities [159]. In this model, both colony geometry
and public good diffusion are described by graphs and
it was found that cooperation is favored when public
goods decay and diffuse slowly and when colonies
are flatter [159].

Individual-based modeling

Individual-based (also known as agent-based)
models (IbMs) explicitly treat each individual cell as
a discrete independent entity that interacts with other
individuals and with its continuous environment.
These models allow the introduction of individual
variability (e.g., in growth rates, substrate uptake and
secretion rates, cell mass, cell volume, etc.). This
modeling formalism is a bottom-up approach where
the dynamics and function of the whole system is
governed by that of individual cells in their pursuit of
optimal fitness [160]. While the biomass spreading is
modeled using the discrete individual-based ap-
proach (where cells are modeled as spheres spread-
ing only when they get too close to each other),
changes in concentration of soluble substrates in
the continuous environment is modeled using reac-
tion-diffusion equations. Therefore, in contrast to
previously described PDE models, here reaction-dif-
fusion models are used only to follow the dynamics of
the shared compounds rather thanmicrobial biomass.
The discrete and continuous models are then
integrated numerically using the so-called “hybrid
Eulerian–Lagrangian approach” [161].
These models have been employed extensively to

analyze microbial interactions [162–168]. For exam-
ple, Nadell et al. [164] used a two-dimensional
individual-based model to uncover how cooperative
and cheater cells can spontaneously segregate from
each other in space as the size of a biofilm colony
expands. This spatial segregation allows cooperative
cells to preferentially interact with other cooperative
cells thereby avoiding exploitation by cheaters and
favoring the evolution of cooperation. This same
modeling framework was used in a later study [166]
to assess how addition of a new species to a biofilm
microbial community will affect the evolution of
cooperation. Momeni et al. [167] also used an
individual-based model to systematically explore how
different types of ecological interactions affecting the
fitness of species can lead to distinct patterning in
three-dimensional communities grown from two
fluorescently-marked populations of cells initially dis-
tributed randomly on the top of a surface. This model
predicted that interactions benefiting at least one
population could allow initially disparate partner ratios
to converge over time. Furthermore, it revealed that
strongly cooperative cells are inter-mixed by forming
patches successively accumulating on top of each
other.

Genome-scale metabolic network modeling

All the modeling approaches described so far aim at
predicting the dynamics of microbial communities
based on the description of the abundance of different
species and on a crude description of how each
species affects other species. Interaction terms,
described for example as a matrix in Eq. (1) or
Eq. (4), constitute a simplified abstraction of
inter-species interactions driven by the complex
network of molecular processes that take place within
individual cells. Mathematical modeling of intracellular
networks is a growing research area, and one of the
pillars of systems biology. The question is whether and
how one can build a bridge between systems biology
and microbial ecology in order to study



Fig. 3. Metabolic modeling of microbial communities provides an opportunity to infer, rather than assuming,
inter-species interactions network from the intracellular metabolic networks of community members.
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ecosystem-level function and dynamics by modeling
the detailed wiring present within each cell.
A major progress in this direction has been made

possible, in the last decade, by the rapid advances in
the construction of genome-scale stoichiometric-based
models of metabolism. Each model consists of a
compilation of all biochemical reactions occurring in
an organism derived from its annotated genome.
These models also typically contain a fictitious
reaction (referred to as biomass reaction) whose
reactants are precursors essential for cellular growth
and whose stoichiometric coefficients correspond to
the relative contributions of these precursors to the
cell’s dry biomass. The flux of this reaction is
considered to be an indicative of cell’s growth
capacity. Genome-scale stoichiometric models of
metabolism are now available for a wide variety of
organisms, ranging from bacteria to archaea and
plants [169–172].
Flux Balance Analysis (FBA) [173] is a mathemat-

ical modeling approach that utilizes these stoichio-
metric models to analyze how cells allocate
environmentally available resources for homeosta-
sis and reproduction. It is capable of making
quantitative predictions of intracellular reaction
fluxes, the export and secretion rates of metabolites
and the cell’s growth rate under the pseudo
steady-state condition without requiring any kinetic
parameters. Toward this end, a core assumption in
FBA is that metabolic fluxes in the cell are close to a
predictable optimum (e.g., maximum biomass pro-
duction) describing a state achieved by the cell
through evolutionary adaptation (e.g., adaptation
toward maximum growth). This optimality criterion is
formulated as a linear programming problem (for a
single-species system):

maximize vbiomass FBA½ �

subject to

XN
j¼1

Si jvj ¼ 0 ∀ i ∈ I;

ð6Þ

LB J ≤vj ≤UB j ∀ j ∈ J;
vj ∈ℝ ∀ j ∈ J ; ð7Þ

where I and J denote the set of metabolites and
reactions in the network, Sij is the stoichiometric
coefficient of metabolite i in reaction j (an entry of the
stoichiometric matrix), LBj and UBj are lower and
upper bounds on the flux of reaction j, respectively, vj
denotes the flux of a reaction j serving as optimiza-
tion variables and vbiomass is biomass production
flux. Constraint (6) represents steady-state mass
balance for each metabolite in the network and
Constraints (7) impose lower and upper bounds for
each reaction flux. In addition to the maximization of
biomass flux, other studies have explored alternative
objective functions [174] or the sampling of all flux
values irrespective of any optimality principle [175].
FBA has been experimentally tested for several
systems, and successfully used for model-driven
biological discovery as well as for a variety of
biomedical and biotechnological applications (see
[176–179] for comprehensive reviews).



Table 2. A summary of various categories of community modeling approaches using genome-scale metabolic models

Modeling formalism Modeling
condition

Type of
optimization
problem

Reference

Compartmentalized community-level metabolic
modeling based on FBA

Steady-state Linear
programming

Stolyar et al. [180], Shoaie et al. [183], Heinken and
Thiele [185], Bordbar et al. [186], Klitgord and
Segre [56], Gomes de Oliveira Dal'Molin
et al. [188], Bizukojc et al. [189], Merino
et al. [190], Nagarajan et al. [191]

Compartmentalized community-level
metabolic modeling based on MOMA

Steady-state Quadratic
programming

Wintermute and Silver [22]

(De-)Compartmentalized community-level
metabolic modeling based on
elementary mode analysis

Steady-state NA Taffs et al. [194],

Analysis of metabolic model-derived metrics
quantifying the degree of cooperation
and/or competition

Steady-state NA Zelezniak et al. [195], Kreimer et al. [196], Levy et al.
[197,198], Borenstein and Feldman [198]

Community FBA based on the balanced
growth of microorganisms

Steady-state Linear/
Nonlinear
programming

Khandelwal et al. [193]

Multi-level and multi-objective modeling Steady-state Nonlinear
programming

Zomorrodi and Maranas [200], El-Semman et al.
[201]

Dynamic multi-species metabolic modeling
based on the extension of dynamic FBA
[210] for single species

Dynamic Linear
programming

Zhuang et al. [202], Salimi et al. [203], Hanly and
Henson [205,206,208], Tzamali et al. [207],
Chiu et al. [211]

Multi-level and multi-objective dynamic
metabolic modeling

Dynamic Nonlinear
programming

Zomorrodi et al. [213]

Direct integration of community-level
dynamic FBA and diffusion models

Spatiotemporal Linear
programming

Harcombe et al. [214], Cole et al. [215]
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The ability to model the metabolism of an organism
at genome-scale paved the way for an unprecedented
opportunity to transition from phenomenological
modeling (e.g. the generalized LV equations) to
mechanistic modeling of microbial communities at
genome-scale resolution. This enabled researchers to
ask many questions that could not be directly
addressed using other modeling approaches: Can
one infer, instead of assuming, inter-species interac-
tion networks from intracellular metabolic networks
(see Fig. 3)? Can one predict whether compounds
secreted by one organism could be used by a different
organism? Can these metabolic interactions lead to an
overall efficient resource utilization? How often do
cross-feeding or competition arise? These questions
spurred the development of metabolic models for
simple multi-species microbial systems. These models
evolved from steady-state analysis to dynamic and
spatiotemporal analysis of microbial communities (see
Table 2 and Fig. 4).

Steady-state models

Metabolic modeling of microbial communities was
pioneered by Stolyar and colleagues [180] who
reconstructed a stoichiometric metabolic model of a
simple mutualistic microbial community consisting
of Desulfovibrio vulgaris and Methanococcus
maripaludis. This analysis treated a multi-species
community analogously to multi-compartment meta-
bolic models of eukaryotes, such as Saccharomyces
cerevisiae [181,182]. In these eukaryotes models,
multiple organelles are modeled by defining suitably
labeled compartment-specific metabolites and
reactions, and adding transport reactions across
compartments, as dictated by the knowledge of
diffusion or transporters. In a community-level
model, members can be similarly treated as
compartments embedded in a meta-compartment
that represents the shared environment. Formally,
the stoichiometric matrices of individual species can
be combined with each other in a larger block matrix,
to construct a community-level stoichiometric matrix.
One subtle aspect of implementing FBA simulations
for a microbial community based on this
compartment-based stoichiometry is the identifica-
tion of an appropriate objective function. In the
Desulfovibrio-Methanococcus model, the wide-
ly-employed FBA objective of biomass maximization
was replaced with the maximization of a weighted
sum of the biomass production fluxes for the
community members (see Fig. 4a). This
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community-level FBA problem can then be formu-
lated as follows:

maximize
XK

k¼1
wkvk

biomass

subject to

XNk

j¼1
Sk

i j v
k
j ¼ 0 ∀i ∈ Ik ; k ∈ 1; 2;…;Kf g;

ð8Þ

LBk
J ≤v

k
j ≤UBk

j ; ∀ j ∈ J ;k ; k ∈ 1; 2;…;Kf g ð9Þ

X
k∈Kexport ;i

v k ;export
i −

X
k∈Kuptake;i

v k ;uptake
i −vcommunity

EX i eð Þ ¼ 0 ∀i ∈ Ishared ;

vk
j ∈ℝ ∀ j ∈ Jk ; k ∈ 1; 2;…;Kf g;

ð10Þ

where all basic parameters and variables are
analogous to those defined for the single-species
FBA problem (Eqs. (6)-(7)), except for the additional
superscript label k, which denotes the community
member k to which they belong. In addition, wk is a
pre-specified weight for the biomass flux of each
community member in the objective function, Ishared

is the set of shared metabolites, and Kexport,i and
Kuptake,i are the sets of community members export-
ing and uptaking a shared metabolite i, respectively.
Moreover, the variable vEX_i(e)

community represents the
community’s net exchange rate of shared metabolite
i with the surrounding environment (a positive value
implies export while a negative value implies
uptake). Constraints (8) and (9) are similar to
Constraints (6) and (7), respectively, for community
member k and Constraint (10) represents a stea-
dy-state balance on the shared metabolite i in the
extracellular compartment, where it is produced by
some community members and is consumed by
some others.
This compartment-based approach and its vari-

ants were used in many subsequent community
metabolic modeling studies, ranging from the study
of the gut microbiota [183–185] and interactions
between multiple tissues in human and plants
[186–188] to the overproduction of chemicals [189]
and the study of a variety of other synthetic and
natural multi-species systems [22,56,190,191]. For
example, Heinken and Thiele [185] constructed a
metabolic model of pairwise interactions between 11
representative microorganisms in the gut, in con-
junction with a metabolic model of human small
intestinal enterocytes subject to three different diets.
Here, the host and microbes interact through a
compartment simulating the intestinal lumen serving
as a pool for nutrients derived from the diet and
enterocytes. This study suggests the presence of
species-specific commensal, parasitic, mutualistic,
or competitive interactions among these microbes.
In another effort, as a step toward modeling a whole
plant system a multi-tissue model consisting of six
different tissues related to root, stem and leaf were
reconstructed [188]. This model was utilized to probe
the division of labor between the source and sink
tissues assuming that all tissues work in concert for
plant growth by minimizing energy usage (photon
capture) as the objective function. Nonlinear objec-
tive functions to model microbial communities have
been also explored by extension of the minimization
of metabolic adjustment (MOMA) framework [192] to
model synthetic crosstalk between pairs of auxotro-
phic E. coli mutants [22]. On another front, this
multi-compartment approach was used to show
computationally that it is in principle possible to
induce a cross-feeding interaction between two
microbial species by cultivating them in an appropri-
ately designed medium [56]. The search for such
syntrophy-inducing media used a mixed-integer
linear optimization approach to minimize the number
of exchanged metabolites under the constraint that
the biomass production by each species must be
greater than a pre-specified threshold. Conceptually,
this study illustrated the possibility of engineering
interactions and communities by tweaking the
environment rather than manipulating the genomes
of the organisms. Other studies pursued an exten-
sion of FBA that directly accounts for species
abundances based on the concept of balanced
growth of microorganisms (community FBA) [193], or
stoichiometric-based metabolic modeling of micro-
bial communities independent of an optimality
assumption, such as elementary mode analysis
[194] or the analysis of (topological-based) metrics
quantifying the degree of inter-species competitive/
cooperative metabolic interactions [195–199].
One of the delicate issues, both conceptually and

technically, in handling stoichiometric FBA-based
models of communities is the interplay and trade-offs
between individual organisms’ objectives and po-
tential ecosystem-level ones. An approach explicitly
designed to address this interplay, and to aid in the
development of engineered communities capable of
defined tasks is the multi-level and multi-objective
optimization framework, OptCom [200]. This is a
nested optimization problem where some of the
constraints are another optimization problem (re-
ferred to as inner-level problems) [179]. OptCom
couples distinct FBA problems for each community
member (as inner problems with potentially conflict-
ing objective functions), with a community-level
objective function (as the outer-level objective).
Species-specific inner problems are linked together
through the inter-species interaction constraints in
the outer problem that express the metabolite
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exchange among community members (i.e.,
Eq. (10)). The objective function of the outer-level
problem is to optimize a community-level fitness
function (see Fig. 4b). Even though a universal
community-level objective function is hard to identify,
maximization of the entire community biomass has
been used as a first approximation, assuming that
the whole community works as a “super-organism”
striving to maximize its growth [200]. Alternatively,
one can impose a desired bioengineering objective
(a) (b)

(c) (d)

(e)
Fig. 4 (legend o
for the outer-level problem (such as the overall
production of a given compound) to provide guid-
ance on what type of interactions are needed to
achieve this goal. OptCom was used to examine the
addition of a new member to an existing community
representative of those in subsurface anaerobic
environments [200] and to model interactions be-
tween Bifidobacterium adolescentis and Faecalibac-
terium prausnitzii in the gut microbiota [201]. It is
worth noting that due to the fact that it relies on a
n next page)
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multi-level optimization framework, OptCom is com-
putationally more costly than the conventional
single-level FBA formulations. Therefore, it is most
appropriate for cases where different species- and
community-level objective functions are sought.
Furthermore, OptCom is not a suitable modeling
framework for purely competitive microbial commu-
nities as a community-level objective function is
biologically irrelevant for such systems.
Dynamic models

The FBA-based community-level approaches de-
scribed above, while useful for several applications,
have some inherent limitations, due to the nature of
FBA. These limitations include the lack of explicit
temporal scales, the incapacity to predict microbial
species abundances as well as the need to define a
priori a community-level objective function. Interest-
ingly, a lot of these issues are naturally resolved
by extending steady-state analysis methods to
approaches that explicitly model the dynamics of
microbial growth and of environmental metabolites
[202–208]. These methods (see [209] for a review)
are mostly based on the extension of dynamic FBA
(dFBA) [210] for single-species systems (see
Fig. 4c). As a first attempt in this direction Zhuang
et al. [202] proposed Dynamic Multi-species Meta-
bolic Modeling (DMMM) framework, where cell
densities are updated similarly to dFBA, while
shared metabolite concentrations evolve by taking
into account all species producing or consuming
each shared metabolite:

dCk

dt
¼ μkCk ; k ¼ 1; 2;…;K ; ð11Þ
Fig. 4. Development of techniques for the metabolic modelin
spatio-temporal analysis. Brackets represent an optimizatio
(labeled as s and p), dashed arrows represent inter-species m
and solid arrows denote the uptake and export of mea
compartmentalized community-level metabolic models with t
fluxes of community members (see Eqs. (8)-(10)) [180]. (b) St
optimization procedure (a nested optimization problem, where
referred to as inner-level problems [179]). Here, a separate FB
as inner-level optimization problems and capturing species-le
using constraints in the outer-level problem representing m
objective function of the outer-level problem captures a comm
community biomass flux) or a desired community-level bioen
compound) [200]. (c) Dynamic analysis by using the dynam
extension of dynamic FBA for single species [210]. Here, biom
updated using a finite difference approximation of the conserva
FBA problem is solved for each species at each time point to
dynamic multi-level and multi-objective optimization procedu
species-level FBA problems are coupled with a community-lev
conservation of mass equations. (e) Spatio-temporal analysis
(c) and diffusion models [214].
dCi

dt
¼

X
k∈Kexport ;i v

k ;export
i Ck−

X
k∈Kuptake;i v

k ;uptake
i Ck ; ∀i ∈ Ishared

ð12Þ

Here,Ck andCi denote the density of species k (g/l)
and the concentration of shared metabolite
i (mmol. gDW−1. h−1), respectively and μk (h−1) is
the specific growth rate of species k. Constraint (11)
models the exponential growth phase and Constraint
(12) represents the conservation of mass for the
shared metabolite i in the extracellular space. These
differential equations are discretized using a finite
differencemethod, in which the specific growth rate μk
for species k at each time point is determined by
solving the corresponding FBA problem. Notably, in
the solution of each FBA problem, uptake limits for the
shared metabolites are determined by using kinetic
expressions (such asMonod kinetics), which estimate
the uptake flux upper bound as a function of the
extracellular concentration of that metabolite.
DMMM was used to model competition between

Geobacter sulfurreducens and Rhodoferax ferrire-
ducensin in natural and manually perturbed anoxic
subsurface environments [202] and a co-culture
of Clostridium acetobutylicum and Clostridium
cellulolyticum for consolidated bioprocessing of
lignocellulosic material [203]. An extension of the
DMMM framework was also developed to identify
the optimal acetate and Fe(III) addition rates for the
effective uranium reduction by controlling the relative
abundance of Geobacter sulfurreducens and
sulfate-reducing bacteria [204]. In addition to
addressing environmental issues, these approaches
have been used for exploring possible ways to
increase the production of chemicals and biofuels
[205,206,208,211]. For example, a multi-species
g of microbial communities from steady-state to dynamic to
n problem, empty circles represent shared metabolites
etabolic extracellular interactions (metabolite exchanges)
surable metabolites. (a) Steady-state analysis using
he objective function being a weighted sum of biomass
eady-state analysis using a multi-objective and multi-level
some of the constraints are another optimization problem
A problem is defined for each community member serving
vel fitness criteria. These FBA problems are integrated by
etabolite exchanges among community members. The
unity-level fitness criterion (e.g., maximization of the total
gineering objective (e.g., the overproduction of a desired
ic multi-species metabolic modeling [202] based on an
ass and shared metabolite concentrations are dynamically
tion of mass equations (see Eqs. (11) and (11)). A separate
determine their growth rate. (d) Dynamic analysis using a
re that combines procedures in (b) and (c) [213]. Here,
el or a desired bioengineering objective function using the
by the direct coupling of dynamic metabolic analysis in
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dFBA framework was combined with flux variability
analysis (FVA) [212] to identify the biosynthetic
capacity of a large number of synthetic two-species
communities consisting of over 100 microbial spe-
cies, where the co-culture enables the production of
metabolites that cannot be produced by mono-
cultures in the same growth medium [211]. The
dynamic nature of this analysis revealed two phases
where new biosynthetic capabilities emerge: One as
soon as the organisms are introduced into the same
medium and the other toward the end of the growth
period in a nutrient-depleted growth medium.
In line with these advances in dynamic analysis

tools, an extension of the OptCom procedure [200],
termed d-OptCom (dynamic OptCom), was pro-
posed for the dynamic multi-objective metabolic
modeling of microbial communities [213] (see
Fig. 4d). Here, time-dependent conservation of
mass for the biomass of community members and
shared metabolites (Eqs. (11) and (12)) as well as
kinetic expressions determining the uptake rate of
shared metabolites are included as new constraints
in the outer-level problem. While, similarly to
OptCom, the inner-level optimization problems are
species-specific FBA problems subject to uptake
rates determined by the outer problem, maximization
of the total community biomass concentration was
used as the outer-level objective function (instead of
maximizing the sum of biomass fluxes in OptCom).
d-OptCom was used to model the dynamics and
biomass composition of synthetic two-species con-
sortia composed of two cross-feeding E. colimutants
and that of a uranium-reducing community com-
prised of Geobacter sulfurreducens, Rhodoferax
ferrireducens, and Shewanella oneidensis [213].
Notably, the use of community-level objective function
allowed for the emergence of costly cooperation in the
former case study, which cannot be captured by
DMMM-like approaches. Nevertheless, in cases
where a community-level objective is biologically
irrelevant (e.g., for a pure competitive ecosystems)
or uncertain, DMMM-like approaches are preferred
since they have lower computational cost and they
allow thewhole community’s function and dynamics to
emerge solely from the selfish behavior (i.e., growth
maximization) of its constituent species.
Spatio-temporal models

As noted earlier, in addition to temporal variability,
microbial communities generally display high spatial
heterogeneity, due both the inhomogenous nature of
the surrounding environment, and the locality of
interactions between different microbes in the absence
of vigorous mixing. By adding a spatial component to
the community-level dynamic FBA concept described
above, it is possible to explicitly model inter-species
interactions in structured environments, such us
layered biofilms, or colonies on a Petri dish. The
development of such an integrated platform was the
goal of a recent modeling framework termed COMETS
(Computation Of Microbial Ecosystems in Time and
Space) [214]. The COMETS framework directly cou-
ples community-level dFBA with diffusion models to
enable the spatio-temporal analysis of microbial
communities using genome-scale metabolic models
[214] (see Fig. 4e). A heterogeneous environment is
approximated by a spatially structured lattice. Each
point in this lattice may contain an arbitrary number of
species and different concentrations of shared metab-
olites. Simulations consist of two fundamental steps
including (i) cellular growth and metabolite secretion/
production at each lattice point modeled by a multi-
species dFBA framework similar to DMMM [202] and
(ii) a finite difference approximation of the shared
metabolites and biomass diffusion in the lattice.
COMETS predictions were tested experimentally for
two-species and three-species synthetic consortia
involving E. coli, Salmonella enterica and Methylobac-
terium extorquens. COMETS enabled the study of how
pairs of cross-feeding colonies may be affected by the
interposition of a third colony in between them,
highlighting the complex dependency of inter-species
interactions on spatial organization. A modeling strat-
egy similar to COMETS was used to model the
emergence of acetate cross-feeding sub-populations
in colonies of E. coli growing on an agar plate [215].
Current challenges in modeling microbial
communities

A long-standing challenge in the model-driven
analysis of microbial communities is the increase in
demand for computational resources for complex
and/or large-scale microbial communities. For ex-
ample, such problems arise for individual-based
models, where one typically deals with a consider-
ably large number of individual cells, as well as for
FBA-based methods, in which it may need to handle
a large number of community members whose
genome-scale metabolic models could contain of
the order of a thousand reactions and metabolites.
These issues become even more prohibitive if
spatial heterogeneity is taken into account, espe-
cially in two- or three-dimensional discretized space.
Due to these limitations both IbM and FBA studies
that include spatial heterogeneity have been so far
applied to small-scale (from micrometers to centi-
meters) environments [162,214,216]. In addition to
more powerful computers and more efficient core
algorithms, these issues can be addressed by
reducing the complexity of the problem in a number
of ways. For IbMs, for example, a proposed solution
has been to work with “super-individuals”, which are
representatives of a large number of individuals with
similar traits [217]. This approach, however,
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weakens the intrinsic advantage of IbMs, which is to
capture variability at the individual cell level [161].
Similarly to super-individuals, one can reduce the

number of necessary genome-scale metabolic
models in a complex microbial community by using
the concept of “a functional guild”. A guild is a group
of organisms that use the same class of environ-
mental resources in the same manner [218]. Instead
of considering all species in a community one could
work with a few representative guilds without the
significant loss of accuracy. This strategy has been
used before in metabolic modeling of microbial
communities from Octopus and Mushroom Springs
in Yellowstone National Park [194,200]. Alternative-
ly, it may prove useful to build and employ, for
example, genus-level models containing all or most
abundant metabolic reactions from their member
species.
A possible strategy to address high computational

demands for modeling large-scale heterogeneous
environments is creating a “look-up” table. This table
contains pre-computed solutions for a computation-
ally manageable list of combinations of environmen-
tally-relevant cell and nutrients distributions in space
(e.g. a matrix of possible values for nitrogen and
carbon source concentrations in the medium). This
approach has been pursued for single-species FBA
simulations in a large heterogeneous environments
[219] but can be easily extended to both multi-spe-
cies FBA simulations or IbMs. In this way, instead of
directly solving a FBA problem for each species at
each time and grid point, the required reaction fluxes
are updated simply by interpolating within this
loop-up table. Future developments could use
combinations of pre-computed solution tables and
new calculations, as dictated by environmental
conditions.
As a complementary strategy to reduce the

computing time, one can invest in the development
of efficient high-performance numerical and compu-
tational methods that can alleviate the CPU demand
of synthetic ecology algorithms. An example of
progress in this direction has been recently reported
through the development of a software tool termed
Biocellion [220] for the individual-based modeling of
large communities containing millions to billions of
cells. By utilizing efficient numerical and paralleliza-
tion techniques, it was possible to reduce the
required CPU time for a case study on pattern
formation in microbial communities [167] from a
week to a few hours [220].
In addition to computational complexity, the

development of stoichiometric-based algorithms for
synthetic ecology needs to address a number of
other challenges. Some of these challenges are
rooted in our limited capacity to translate genomes
and metagenomes into complete and accurate lists
of functions for individual species in a community.
Despite the availability of automated metabolic
model reconstruction pipelines such as MetaFlux
[221], ModelSeed [170] and the RAVEN toolbox
[222], all these algorithms can only partially com-
pensate for the lack of knowledge of gene function.
These algorithms provide only first-draft reconstruc-
tions, whose conversion to a computationally reliable
model still requires extensive and time-consuming
manual curation. New algorithms, e.g. using like-
lihood-based gene annotation and gap filling [223]
can alleviate to some extent the need for manual
curation, but they do not fully resolve the need for
manual curation. A major leap towards resolving this
problem at its root may result from coordinating big
community endeavors for the prediction and exper-
imental validation of individual gene functions, as
pioneered for example by the COMBREX consor-
tium [224].
More broadly, the granularity at which taxonomy

should be represented in stoichiometric metabolic
models constitutes a technically and conceptually
fascinating question. Brought to the extreme, one
could ask whether it is possible to build commu-
nity-level stoichiometric models as “soups of en-
zymes” irrespective of the knowledge of what
reaction is performed by what species, similar to
previously proposed models of biosphere-level
metabolism [225,226] (also see [194]). One of the
advantages of this approach would be the possibility
of building community-level models straight from
metagenomic sequencing data. Such metagen-
omic-based metabolic models could indeed conve-
niently capture the entire repertoire of functions of
the community as a whole. However, the lack of
metabolite and reaction compartmentalization in
these models could lead to significant complications
or predictions errors, for example due to the
disruption of membrane gradient-mediated process-
es [227].

Conclusions and future perspectives

The emergence of synthetic ecology has provided
an attractive alternative to engineering single-
species systems for a wide variety of tasks ranging
from the discovery of key ecological features of
natural microbial communities to the targeted
design of synthetic consortia for biotechnological
and biomedical applications. While several exam-
ples of promising small synthetic ecosystems
have demonstrated the feasibility of this approach,
the most exciting opportunities of synthetic ecology
require coping, in a more systematic way, with the
complexity of microbial systems, and in particular
with a hierarchy of nested networks, from those
within microbes to those between them. Predictive
mathematical modeling approaches can play a key
role in addressing these challenges: they can help
decipher how inter-species interactions in natural
microbial communities govern community dynamics
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and evolution, and translate harvested knowledge
into methods for the design of new communities with
desired properties. The successful development of
these predictive tools will require both revisiting
existing modeling approaches to cope with the
inherent complexity of microbial ecosystems, and
inventing new ones.
When combined with engineering principles, these

modeling approaches have a great potential in
complementing experimental efforts (by reducing or
prioritizing costly experiments) to address a number
of current challenges in biotechnology, and biomed-
icine. The most immediate application is the rational
design of microbial communities capable of perform-
ing a desired task. This brings to the forefront the
need to develop efficient “computational consortia
design” algorithms similar to strain design algorithms
for single-species systems, which have been suc-
cessfully applied to bioenergy and metabolic engi-
neering applications (see [179] for a review of these
tools). For example, as mentioned before, mathe-
matical modeling tools such as OptCom [200] and
d-OptCom [213] can be easily re-purposed/adjusted
for engineering applications by mathematically
describing the desired engineering objective as the
outer-level objective function, while the inner-level
problems simulate species-specific fitness criteria as
before. There are also several ways of incorporating
engineering interventions in these and other similar
frameworks. For example, one can use binary
variables to determine whether a gene in a specific
community member must be knocked out or whether
a community member or a nutrient in the growth
medium should be removed or if a new one should
be added, to optimize the desired engineering
objective [56,200,213]. Moreover, new computation-
al approaches, combining ideas from synthetic
biology, metabolic engineering and ecosystem-level
modeling could enable the concurrent design of
environments and strains to achieve a desired
behavior. At a finer scale, taking into account the
interplay between multiple biological processes
contributing to the ecological behavior of a commu-
nity member can enhance the predictive power and
the scope of modeling frameworks. For instance,
recent advances in whole-cell modeling [228] and
integrated metabolic-expression (ME) models [229]
have enabled capturing several ecologically relevant
biological processes that are not addressed by
stoichiometric-based metabolic models such as
gene expression, regulation and signal transduction.
Although the current studies using these models
have focused on individual species so far [230,231],
it is likely that these models will play a crucial role in
constructing more predictive models of microbial
communities.
Another important aspect for which modeling can

play a key role in guiding the design of synthetic
communities is the assessment of synthetic consor-
tia stability. Similarly to engineered single species,
instability is a major problem associated with
engineered consortia, either based on wild-type or
on genetically modified strains. Many existing
consortia design strategies rely on the assumption
that interactions among community members are
fixed. However, patterns of inter-species interactions
can be significantly modulated by environmental
changes, and can change during the course of
evolutionary adaptation [232]. Thus, understanding
processes that may guarantee stability and resil-
ience in presence of these changes would require
taking explicitly into account the volatility and
context-dependence of interactions. Knowledge
from the large body of evolutionary and ecological
theory literature dedicated to addressing the prob-
lem of stability and the evolutionary fate of inter-
species interactions in communities (e.g.,
[233–236]) could be used to inform computational
consortia design tools to arrive at evolutionary stable
communities. The importance of this integration has
been recognized before [237] but has not been
realized so far. Given that natural microbial commu-
nities are generally stable and robust to perturba-
tions, some studies suggest the use of a top-down
approach to address the stability issue. This was
achieved by using artificial selection to sequentially
screen a natural microbial community and arrive at a
refined community capable of efficiently and stably
performing the desired function [238,239]. For
example, this approach was used to select for an
efficient 3-chloroaniline degrading community [239].
The promise of artificial selection was also shown by
using individual-based modeling in a later study
[240].
Even though both bottom-up and top-down

approaches use different formalisms and assump-
tions, a synergy between these two could have great
potential and applications. For example, a commu-
nity obtained through sequential screening or labo-
ratory evolution experiments could be later
scrutinized to reveal its key species and interactions.
Moreover, in analogy to a process referred to as
“refactoring” in synthetic biology [241], one could
build a more tractable, standardized and simplified
version of such a community. Refactoring a
microbial community would entail re-designing a
screened natural community from the bottom up by
systematically eliminating undesired and poorly
understood organisms and interactions, and
replacing them with well-characterized ones. A
refactored community could achieve the same
functionality of the original one, but with enhanced
stability and tractability. Thus, similar to the
standardization of biological parts (biobricks) for
synthetic biology [242], we envision that the field of
synthetic ecology may similarly benefit from a
registry of standard “ecological parts”. This registry
would catalogue well-characterized ecological parts
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such as microorganisms and small ecological
modules (motifs) with defined functions, inputs/
outputs, interaction properties and, ideally, evolu-
tionary characteristics. Such a registry would facil-
itate the experimental construction of increasingly
complex consortia and could be complemented with
new modeling tools to identify the required building
blocks and the ecological circuit connectivity that
bring about a desired function.
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