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Combination of geodetic observations and models for glacial
isostatic adjustment fields in Fennoscandia
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[1] We demonstrate a new technique for using geodetic data to update a priori predictions
for Glacial Isostatic Adjustment (GIA) in the Fennoscandia region. Global Positioning
System (GPS), tide gauge, and Gravity Recovery and Climate Experiment (GRACE)
gravity rates are assimilated into our model. The technique allows us to investigate the
individual contributions from these data sets to the output GIA model in a self‐consistent
manner. Another benefit of the technique is that we are able to estimate uncertainties
for the output model. These are reduced with each data set assimilated. Any uncertainties
in the GPS reference frame are absorbed by reference frame adjustments that are estimated
as part of the assimilation. Our updated model shows a spatial pattern and magnitude
of peak uplift that is consistent with previous models, but our location of peak uplift
is slightly to the east of many of these. We also simultaneously estimate a spatially
averaged rate of local sea level rise. This regional rate (∼1.5 mm/yr) is consistent for
all solutions, regardless of which data sets are assimilated or the magnitude of a priori GPS
reference frame constraints. However, this is only the case if a uniform regional gravity
rate, probably representing errors in, or unmodeled contributions to, the low‐degree
harmonic terms from GRACE, is also estimated for the assimilated GRACE data. Our
estimated sea level rate is consistent with estimates obtained using a more traditional
approach of direct “correction” using collocated GPS and tide gauge sites.
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1. Introduction

[2] Glacial isostatic adjustment (GIA) is the ongoing
viscoelastic deformation of the Earth and adjustment of the
oceans in response to the loading and unloading of the ice
sheets associated with the glacial cycles. The present‐day
GIA signature is dominated by the rapid melting of the ice
sheets associated with the last glacial maximum occurring
∼22,000 years ago. A large literature is devoted to the
numerical prediction of GIA. Assuming a spherically sym-
metric Earth structure, viscoelastic loading Green’s func-
tions [e.g., Peltier, 1974] are calculated using an Earth
model that describes the viscoelastic structure of the litho-
sphere and mantle. The viscoelastic Green’s functions are
convolved with a model for the time‐dependent glacial load.
The self‐gravitation and loading effects associated with
redistribution of the glacial meltwater in the oceans are
accounted for by solving the sea level equation [e.g.,Farrell and
Clark, 1976; Clark et al., 1978; Mitrovica and Peltier, 1991].

Recently, a number of additional features have been
included, such as the altered geometry of the ocean load
with changing sea level and variations in marine‐based ice
[Johnston, 1993; Peltier, 1994, 1998; Milne et al., 1999;
Mitrovica and Milne, 2003], as well as the “feedback” effect
on Earth rotation [Han and Wahr, 1989; Bills and James,
1996; Milne and Mitrovica, 1996; Mitrovica et al., 2005].
More recently, GIA modelers have begun experimenting
with more realistic, nonsymmetric Earth models [Tromp and
Mitrovica, 2000; Martinec, 2000; Wu, 2004; Latychev et al.,
2005; Paulson et al., 2005].
[3] Numerical predictions of GIA are therefore sensitive

to errors in the adopted Earth and ice history model, and to
modeling assumptions and simplifications. Using observa-
tions to constrain the models necessarily includes further
simplifications required to reduce the solution to a tractable
problem. A common approach, for example, is to assume
that the ice history model is correct, and to use a data set to
estimate corrections to the Earth model (generally mantle
viscosity and effective lithospheric thickness) for a limited
number of spherical layers. This approach yields an Earth‐
ice model combination in which neither component of the
combination is necessarily correct, but which fits the
observations at some level. Although this is a reasonable
approach in many cases, where the trade‐offs between ice
history and Earth models are minimal (especially the case in
previously glaciated areas) [e.g., Wahr and Davis, 2002],
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some data sets exhibit trade‐offs between these models [e.g.,
Sabadini and Vermeersen, 2004], and the GIA model param-
eter estimation approach inevitably leads to systematic errors.
[4] The need for a new approach is acute now that there

are modern space‐geodetic regional data sets of high accu-
racy acquired within previously glaciated areas. One such
example is Fennoscandia, which has an extremely rich data
set for measuring GIA following late‐Pleistocene glaciation
in the region.
[5] For example, the BIFROST (Baseline Inferences for

Rebound Observations, Sea level, and Tectonics) Project
includes a network of continuously operating Global Posi-
tioning System (GPS) sites across Fennoscandia, some of
which have been operating since 1993, that have been used
to determine the three‐dimensional deformation due to GIA
in this area. Milne et al. [2001], Johansson et al. [2002], and
Milne et al. [2004], compared initial results from this net-
work to numerical models for GIA. All these studies found
generally good agreement between the GPS results and GIA
models, but also some significant differences. (The models
were tuned to fit the data, so general agreement is not sur-
prising.) The magnitude of maximum uplift (10–11 mm/yr)
was similar for both models and data. However, the geo-
graphic distributions were slightly different, causing some
significant residual rates in both the horizontal and radial
components (e.g., RMS residuals for observations minus
model, in the radial component, were 1.3 mm/yr [Johansson
et al., 2002]). These differences were suggested to be due to
inaccuracies or simplifications in the Earth or ice model
used for the GIA calculations, although systematic errors in
the GPS results are also discussed. Lidberg et al. [2007]
later updated the BIFROST GPS solutions with a longer
time series and a different processing technique. They
compared their results to both the previous GPS solution
from Johansson et al. [2002] and the model for GIA com-
puted by Milne et al. [2001]. Again there was generally
good agreement between observations and models, but
Lidberg et al. [2007] found small biases between their
solution and the previous studies (RMS residuals of
∼1 mm/yr). They suggested that the biases could be the
result of differences in the reference frame realization. As
with the previous studies, Lidberg et al. [2007] found
maximum discrepancies between their results and the GIA
models in the north of Fennoscandia.
[6] The Fennoscandia GIA signal can also be observed in

time‐dependent gravity rates determined by the NASA
GRACE (Gravity Recovery And Climate Experiment)
mission. Steffen et al. [2008] present GRACE results for the
Fennoscandia region from ∼5 years of data. In comparing
their GRACE results with a GIA model they found good
agreement between the magnitude and location of peak
uplift (maximum of 1.33 mGal/yr for the model, 1.2 mGal/yr
for the GRACE results), but inconsistencies in the geo-
graphical extent of the uplift signal.
[7] Additionally, the tide gauge network around Fennos-

candia and the Baltic Sea is one of the longest running and
most densely spaced in the world, with many stations in
continuous operation since the late 19th century. Measure-
ments of relative sea level change from this network have
been made available by the Permanent Service for Mean Sea
Level (PSMSL) [Woodworth and Player, 2003]. Data from
this network have not generally been used for estimates of

global eustatic sea level change due to the difficulty in
removing the GIA signal from the records of relative sea
level change. However, previous studies [Davis et al., 1999;
Kuo et al., 2004] have demonstrated the utility of the tide
gauge data to studying the GIA signal itself. Kuo et al.
[2004] compared estimates of land uplift from a combina-
tion of TOPEX/Poseidon and tide gauge data with rates
from 10 BIFROST GPS sites and found good agreement.
They found larger discrepancies between their results and
those from numerical models.
[8] As indicated, previous studies have examined the

GPS, GRACE, and tide gauge data sets individually,
showing general agreement with each other and with
numerical models, but with some inconsistencies. Some of
these inconsistencies may be due to difficulties in comparing
results from different models and data in a self‐consistent
way. Each individual data type is subject to particular sys-
tematic errors, has particular spatial sampling and resolution,
and may be sensitive to additional, non‐GIA effects. (For
example, tide gauge data measure the changing sea surface
relative to the solid Earth. Both of these are affected by GIA,
but the sea surface rate is additionally modified by present‐
day ocean volume, steric, and atmospheric changes.) Due to
these different errors, resolutions, and sensitivities, the dif-
ferent data types therefore represent a somewhat inconsistent
picture of the GIA process.
[9] In this paper, we make use of an approach that may be

considered consistent with both the least squares collocation
technique [Moritz, 1980] and data assimilation [e.g.,
Bennett, 2002]. This method enables us to combine the
different data types and spatial sampling to solve for GIA
fields (gravity, deformation, and sea level) on a regular grid.
This approach has not been used before to estimate GIA
because the GIA theory is so complex, resulting in
relationships between the GIA field types (gravity, defor-
mation, sea level) that are difficult to represent. In our
approach, these relationships are expressed as covariances,
which we calculate as sample covariances using a suite of
values from GIA code based on the theoretical improve-
ments collected by Mitrovica and Milne [2003] and Kendall
et al. [2005]. Using this approach we combine the geodetic
data into an a priori GIA model to produce a new and
updated model for GIA. We have several goals: (1) to
produce an updated GIA field that is less dependent on
knowledge of the ice history or Earth model, for uses such
as correction of the geodetic measurements; (2) to investi-
gate the various contributions of the different data sets to the
final GIA model and examine biases between these data sets
in a self‐consistent manner; and (3) to examine whether we
can simultaneously estimate a robust and self‐consistent
estimate of spatially averaged local sea level rise within
our assimilation code. This technique was also used to pro-
duce the GIA model for the Stable North America Refer-
ence Frame (SNARF) (available at http://www.unavco.org/
research_science/workinggroups_projects/snarf/snarf.html).
We begin by describing the approach.

2. Approach

[10] We let u be a vector of parameters representing the
unknown components of the GIA field to be estimated. We
use the term “GIA field” to represent any type of GIA‐
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related observables, such as present‐day three‐dimensional
crustal deformation rates, present‐day gravity rates, or
present‐day relative sea level rates. (We will confine our-
selves to these field types, although there could be others.)
The parameter vector u may contain multiple GIA obser-
vation types. We typically wish to estimate these parameters
on an evenly spaced grid of locations. We also have a vector
of GIA‐field observations d, not necessarily obtained on
a grid. The vector u contains the GIA‐field values corre-
sponding to the union of the grid locations and the locations
for which we have observations. We seek a solution u = û
that minimizes the penalty function J [e.g., Bennett, 2002]

J ½u� ¼ d � A � uð ÞTW�1 d � A � uð Þ þ m� uð ÞTL�1 m� uð Þ ð1Þ

where m is a vector of prior GIA‐field model predictions,
the matrices W and L are inverse weight (i.e., covariance)
matrices associated with the observations and the a priori
predictions, respectively, and the design matrix A contains
the partial derivatives of the observed values with respect to
the parameters

Aij ¼ @di
@uj

����
u¼m

i ¼ 1; . . . ;N j ¼ 1; . . . ;M ð2Þ

where N is the length of the observation vector and M is the
length of the parameter vector. The structure of the design
matrix is discussed below. In addition to the GIA‐field
values, u may contain additional parameters that account for
non‐GIA effects, such as parameters to account for the GPS
reference frame (which may be different to the implicit GIA
reference frame) or parameters to account for sea level
change not associated with GIA. Equations (1) and (2)
implicitly assume that the problem is linear, that the
deviations of the solution from both the prior model and the
data are small enough that the problem is within the linear
regime, or that the problem has been linearized.
[11] In equation (1), the first term of the penalty function

represents misfit of the data d with respect to the predicted
values for the data based on u, and the second term
represents the misfit between the solution and the prior
model. Minimization of the penalty function balances these
two contributions to the penalty. The elements and structure
of W and L weight the contributions.
[12] The dimension N of the observation vector must

account for all the GIA observations at whatever locations
the observations were acquired. For example, if there are
nGPS GPS sites then the number of observations might be
N = 3nGPS, where the factor of three comes from the three
components of velocity. Continuing with the example, if we
wish to estimate the three‐dimensional GIA deformation at
ngrid grid points, and to include six reference frame para-
meters (three rotation, three translation), then the total
number of parameters to be estimated is M = 3nGPS +
3ngrid + 6. Clearly, then, the minimization problem has the
potential of being highly underconstrained. We overcome
this problem by an appropriate choice for the inverse‐weight
matrix L such that the physics of the GIA problem is
inherent in the weight matrix. This choice removes many
degrees of freedom from the problem.
[13] A straightforward choice for the observational

inverse‐weight matrix W is the error covariance matrix for

the observations. In practice, this will often be a diagonal
matrix, although if so‐called “loose” GPS solutions (solu-
tions not yet fixed to a terrestrial reference frame) are used
the matrix will not be diagonal. (Once a reference frame is
established for GPS solutions, nondiagonal elements are so
small that the matrix can be treated in practice as if it were
diagonal.) The prior GIA predictions, however, are not
statistical in nature, as they are derived from forward cal-
culations using adopted Earth and ice history models.
Nevertheless, it is possible to calculate the effect of varia-
tions of Earth and ice models and propagate those variations
into the solution. If W represents a set of “reasonable”
models, and hmi represents the average of the GIA predic-
tions using the NW models in W, then an effective model
covariance matrix can be calculated:

Lij ¼ 1

NW

XNW

k¼1

mk
i � hmii

� �
mk

j � hmij
� �

i; j ¼ 1; . . . ;Mobs þMgrid

ð3Þ

where Mobs is the total number of observations (3nGPS in the
previous example), Mgrid is the number of parameters to be
estimated at grid locations (3ngrid in the example), and the
superscript k indicates that the GIA predictions were cal-
culated using the kth Earth/ice model combination.
Equation (3), though, defines only part of L since the
dimension of L is M × M, where M = Mobs + Mgrid + Mother,
with Mother being the number of additional parameters that
describe effects that are unrelated to GIA (as discussed
above). The covariance of these non‐GIA parameters are
assumed to be uncorrelated with the model values.
[14] The structure of the design matrix A is straightfor-

ward. For j ≤ Mobs + Mgrid, the value of Aij of equation (2)
will be unity if both the location andGIA field type associated
with the indices i and j are the same, and zero otherwise. For
index j > Mobs + Mgrid, Aij is the partial derivative of the
observable with respect to an additional, non‐GIA parameter.
[15] Each individual term in the penalty function of

equation (1) has now been defined. Minimization of the
penalty function involves balancing deviations of the
parameter solution û with respect to observations d against
deviations of the solution from the prior model m. The
relative weight given to each of these terms is defined by the
inverse weight matrices W and L. Off‐diagonal elements of
L constrain the deviations among the parameters to physi-
cally realistic GIA solutions (i.e., the solution is constrained
to fall within a range of values that can be explained by the
physics contained in our suite of forward model predic-
tions). In section 2.1, we discuss how the minimization is
implemented.

2.1. Implementation

[16] Minimizing the penalty function J of equation (1)
with respect to u leads to the solution

u ¼ mþ ATW�1Aþ L�1
� ��1

ATW�1 d � Amð Þ ð4Þ

with covariance matrix

Gu ¼ ATW�1Aþ L�1� ��1 ð5Þ
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Figure 1. Input geodetic rates: (a) GPS radial deformation,
(b) GPS horizontal, (c) GRACE gravity anomaly (minus
GLDAS hydrology model), and (d) tide gauge RSL.

Figure 2. A priori GIA predictions: (a) radial deformation,
(b) horizontal deformation, (c) FAGA, and (d) RSL.
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Equations (4) and (5) take the form of a least squares
solution with prior constraints. This expression involves two
inversions of matrices of order M × M. Depending on the
grid size, it is conceivable that the number of grid locations
can exceed 1500, and if we estimate three‐dimensional
deformation and gravity the number of parameters M can
therefore exceed 6000. While performing inversions of such
matrices is possible, we have chosen to implement a more
efficient method.
[17] The first step is to observe that since, under our

assumptions, the data are uncorrelated, the solution
(equation (4)) can be arrived at iteratively, using the
sequential least squares process [e.g., Xu, 2003]. In this case,
the observation vector d is fed iteratively, one element at a
time, into the solution. The ith iteration yields

ui ¼ ui�1 þ Ki di � Aiui�1ð Þ ð6Þ

Gi ¼ AT
i R

�1
i Ai þ G�1

i�1

� ��1 ð7Þ

Ki ¼ Gi�1A
T
i R

�1
i ð8Þ

where i = 1,…, N, di is the ith element of d, Ai is the ith row
of the design matrix, and Ri is the ith diagonal element of W.
(In our implementation Ri is a 1 × 1 matrix.) The initial
(i = 0) values are u0 = m = hmi and G0 = L.
[18] The sequence (6)–(8) still involves multiple inver-

sions of very large matrices, so we make use of well‐known
matrix identities (Appendix A) to rewrite the expression for
Ki and Gi in the equivalent forms

Gi ¼ Gi�1 � KiAiGi�1 ð9Þ

Ki ¼ Gi�1A
T
i AiGi�1A

T
i þ Ri

� ��1 ð10Þ

The expressions (9) and (10) involve somewhat more mul-
tiplications, but the only inversions involve a 1 × 1 matrix.
(These equations take the form of a Kalman filter with no
dynamics.) Equations (6), (9), and (10) are an efficient
formulation for the sequential least squares solution to the
minimization of equation (1).

2.2. Observation Equations

[19] In this section we present the observation equations
for the three data types used in this study: three‐dimensional
crustal deformation from GPS, free air gravity anomaly rates
from GRACE, and relative sea level rates from tide gauges.
We describe these data types further in section 3.
[20] The observation equation for the GPS rates is

_~rGPSð�; �Þ ¼ _~rGIAð�; �Þ þ ~W� r̂ þ �~T þ~"GPSð�; �Þ ð11Þ

where _~rGPS(l, �) is the three‐dimensional GPS velocity
vector, _~rGIA(l, �) is the deformation vector due to GIA,
W and dT are rotation and translation rate parameters that
represent contributions associated with reference frame as-
sumptions, r̂ is the site position unit vector, and~"GPS(l, �) is
a vector of the error. As discussed in section 3, the GPS
velocities are determined in a Eurasia‐fixed reference frame.
However, such a frame is realized either with a particular
GIA model or, quite often, with no GIA model. The refer-
ence frame parameters thus account for the difference
between a Eurasia‐fixed reference frame that accounts for
the “final” GIA deformation field and the GIA model used
in the realization of the Eurasia‐fixed reference frame.
[21] For the GRACE data, we choose to use estimates of the

free‐air gravity anomaly (FAGA), which emphasizes higher‐
degree variations. The observation equation is therefore

_GGRACEð�; �Þ ¼ _GGIAð�; �Þ þ "GRACEð�; �Þ ð12Þ

where _GGRACE(l, �) is FAGA rate from GRACE, _GGIA(l, �)
is FAGA rate due to GIA, and "GRACE(l, �) is the error.
[22] The observation equation for the tide gauge rates is

_STGð�; �Þ ¼ _SGIAð�; �Þ þ _�þ "TGð�; �Þ ð13Þ

where _STG(l, �) represents the rate of relative sea level
(RSL) change from a tide gauge at coordinates (l, �),
_SGIA(l, �) represents model RSL change due to GIA at this
location, _� represents a spatially averaged local sea level
rate for all tide gauge locations, and "TG(l, �) is the error.
Sea level rise due to present‐day melting will not be spa-
tially constant around the globe [e.g., Mitrovica et al., 2001;

Figure 3. Example correlation plots, all relative to the RSL parameter and a point in the center of the
figure (coordinates 20°W, 62°N): (a) East deformation, (b) North deformation, (c) Radial deformation,
(d) FAGA, and (e) RSL.
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Tamisiea et al., 2001] but here we ignore these effects over
Fennoscandia.

3. Data and Model Inputs

[23] Our technique assimilates estimated rates from GPS,
GRACE, and tide gauges into a priori predictions for GIA.
The a priori estimates are the average of multiple forward
models for GIA. The physics of the GIA are contained in the
input covariance matrix.

3.1. GPS Data

[24] We used both radial and horizontal GPS velocities
(Figures 1a and 1b) estimated by Lidberg et al. [2007].
These are based on ∼8.5 years of data (January 1996 to June
2004) from continuous GPS stations in the BIFROST net-
work. We used a subset of 40 of the sites presented by
Lidberg et al. [2007] as we excluded sites south of the Baltic
Sea. This area is likely to be undergoing other forms of
deformation unrelated to GIA (e.g., tectonic deformation
from Africa‐Eurasia plate convergence [Marotta et al.,
2004]), and the monument geology is generally of glacial
deposits (as compared to bedrock outcrops further north),
which limits monument stability.
[25] Lidberg et al. [2007] processed the GPS data using

the GAMIT/GLOBK software. A network of carefully
selected global stations was used to realize the results to
ITRF2000. The results in ITRF2000 were then rotated using
the ITRF2000 No Net Rotation (NNR) Absolute Rotation
Pole for Eurasia. Comparison of their solution with the
previous results from Johansson et al. [2002] indicated a
radial bias between the solutions of ∼0.5 mm/yr, which they
hypothesized was due to differences in the reference frame
realization. Overall, comparisons with the Johansson et al.
[2002] GPS solution, a GIA model, and results from
Ekman [1998] lead Lidberg et al. [2007] to conclude that
their solution has an accuracy in the radial component at the
0.5 mm/yr level and an internal consistency in the horizontal
component of 0.2 mm/yr (for the best GPS stations with
long observation spans).

3.2. GRACE Data

[26] We estimated rates of change in FAGA using GRACE
data from the University of Texas at Austin Center for Space
Research (CSR) Release‐04 (RL04) (Figure 1c). We also
tested rates estimated using the GeoForschungsZentrum
Potsdam (GFZ) RL04 data. For both data sets we used data
for the period from August 2002 to July 2008. Systematic
errors in the data that cause north‐south striping were
reduced (“destriped”) following a similar technique to that
described by Swenson and Wahr [2006]. The gridded rates
were geographically smoothed with a Gaussian filter of
400 km width, and sampled to a 2° grid. This relatively
coarse sampling was chosen to avoid having a significant
bias in the number of GRACE data points compared to
the number of GPS and tide gauge stations. Nearby points
on a fine‐resolution grid will also be highly correlated.
Hydrological effects were removed using the Global Land
Data Assimilation Systems (GLDAS) model for water
storage [Rodell et al., 2004]. (GLDAS uses ground‐ and
space‐based observations to constrain models for land sur-

Figure 4. Output GIA models for horizontal and radial
deformation, and corresponding uncertainties, with different
combinations of geodetic data set assimilated: (a) GPS only;
(b) tide gauge only; (c) GRACE only; (d) tide gauge and
GRACE; (e) GPS and tide gauge; (f) GPS and GRACE;
and (g) GPS, tide gauge, and GRACE.
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face states. It does not include a groundwater component.)
For consistency, the GLDAS data were destriped and smoothed
using the same routine as that used for the GRACE data.

3.3. Tide Gauge Data

[27] We estimated rates of RSL change for all tide gauges
in the area that have ≥40 years of data (Figure 1d). For these
sites we used all available monthly Revised Local Reference
(RLR) data, although we also present results for rates cal-
culated only using monthly data between 1950 and 2000.
We also, as with the GPS data set, omitted stations along the
south coast of the Baltic Sea.

3.4. GIA Models

[28] As described in section 2, the a priori GIA estimates
for crustal deformation (Figures 2a and 2b), FAGA (Figure 2c),
and RSL (Figure 2d) are the average of multiple forward
model predictions of GIA, all calculated using a suite of

Earth models and the ICE‐5G ice model [Peltier, 2004].
(These a priori estimates are hmi in equation (3).) The Earth
models use a range of upper mantle viscosities of 1–10 ×
1020 Pa s, lower mantle viscosities of 2–50 × 1021 Pa s, and
lithospheric thickness of 71, 96, and 120 km. This results in
a total of 495 models (NW in equation (3)). For consistency,
the input FAGA results were derived from the model geoid
predictions using the same smoothing and destriping rou-
tines used for the GRACE data.
[29] Covariances between all coordinates on our grid (and

all station locations) and for all combinations of parameters
were also calculated using our collection of GIA forward
models. Figure 3 shows examples of correlations (scaled
covariances) plotted relative to a single point and the RSL
parameter. This indicates, for example, that radial defor-
mation parameters will have an inverse relationship to RSL
within the area of peak GIA signal. Similar plots could be
made for all other parameter and coordinate combinations.

Figure 5. Output model for gravity anomaly, with all geodetic data sets assimilated.

Figure 6. Output model for RSL, with all geodetic data sets assimilated.
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An adjustment was made to the forward model predictions
to account for the fact that across our small study area the
horizontal effects are dominated by far‐field effects from
the Laurentian ice sheet. Thus, prior to the calculation of the
covariance matrix, a rotation across the set of GPS sites
was calculated and removed from each model prediction.
The resulting covariance matrix shows the expected outward
motion of the observation sites from the center of the loading.

4. Results

[30] In Figure 4 we show output crustal deformation
models obtained after different combinations of geodetic
data were assimilated (i.e., if a geodetic data set has been
assimilated it was included in the observation vector, d, of
equation (1)). Assimilating only the GPS data produces a
peak maximum uplift of 9.2 ± 0.5 mm/yr, while assimilating
only the tide gauge or GRACE rates slightly increases these
rates (maximum uplifts of 10.5 ± 0.5 mm/yr). (Assimilated
GRACE rates were estimated from the CSR data set, unless
otherwise noted.) Assimilating all the data leads to the
greatest peak uplift (11.4 ± 0.3 mm/yr). Peak uplift is
located at (23°E, 65°N) for all combinations of observations
except GRACE only, which is located at (21°E, 63°N).
Including the GPS results reduces the horizontal velocities,
particularly to the SE of the Baltic, while including the
GRACE data increases these velocities.
[31] We also show the output FAGA model (Figure 5)

and RSL model (Figure 6), both with all data assimilated.
Figure 7 indicates the much closer agreement of the output
models with the observations, compared with the agree-
ment between a priori predications and observations.

[32] Figures 4, 5, and 6 also show estimated sigmas for
the models. It is clear from Figure 4 that uncertainties are
reduced as more data is assimilated into the model. For
example, mean uncertainties are 0.5 mm/yr for a GPS‐only

Figure 7. Comparison of a priori and output model results with observations. Regional sea level rise is
not included in the models, hence the points for the RSL plots fall off the diagonal. Uncertainties for the a
priori predictions are due to the wide range of Earth models used in their calculation.

Figure 8. Comparison of output model and observations
for RSL, with different geodetic data sets assimilated. The
model solution with h included a simultaneous estimation
of a uniform regional gravity rate. For clarity the error bars
for TG observations are not shown.
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assimilation, while they are 0.4 mm/yr with all data assim-
ilated. The ability to simultaneously estimate uncertainties in
the model is a distinct advantage of using this technique.

5. Regional Sea Level Rate

[33] The estimated value for regional average relative sea
level rate ( _�) varies according to a number of factors. We
discuss these factors here. Changes to _� are linked to uni-
form shifts of the entire GIA solution relative to the data. All
sigmas given for _� are the formal standard error output by
the assimilation code.
[34] The most significant changes to _� occur when the

GRACE data are assimilated. Assimilating the GRACE data
significantly increases the estimated value, from 1.6 ±
0.3 mm/yr when only GPS and tide gauge rates are assim-
ilated to 3.3 ± 0.1 mm/yr when GRACE rates are added.
Figure 8 shows the shift that causes this change (red versus
blue dots).
[35] We experimented with using different levels of con-

straint on the estimated GPS reference frame parameters.
For a solution with only GPS and tide gauge rates assimi-
lated, _� is very similar with and without reference frame
parameters constrained to zero (Figure 9a). However, when
GRACE rates are included in the assimilation there is a bias
between results with a constrained reference frame and those
with an a priori reference frame sigma of 0.5 mm/yr ( _� =
2.6 ± 0.1 compared to 3.3 ± 0.1 mm/yr). This offset is clearly
visible in Figure 9b. Increases in the a priori reference frame
sigma beyond 0.5 mm/yr do not lead to a further change in _�.
(Although the reference frame parameters themselves do
change, the effect on the radial GIA field is negligible.)
[36] The tide gauge rates were calculated using all avail-

able data for stations with ≥40 years of data. This could
cause inconsistencies due to different ocean processes
occurring in the different time periods used. We therefore
tested an assimilation with rates calculated using only data
between 1950 and 2000. This produced (without GRACE
data assimilated) an estimate for _� of 1.7 ± 0.3 mm/yr,
which is similar to our previous estimate. Use of a consid-
erably smaller data span, however, does result in a signifi-

cant change to our estimate for _�. For example, using only
tide gauge data between 1990 and 2000 produces an esti-
mated rate of −1.3 ± 0.7 mm/yr.
[37] Results also vary according to the GRACE para-

meters used (e.g., spatial sampling resolution, data proces-
sing center, or whether we scale the uncertainties). For
example, if data from the GFZ processing center are used
instead of those from CSR the uplift area is stronger, pro-
ducing an estimated value for _� of 3.6 ± 0.1 mm/yr (com-
pared to 3.3 ± 0.1 mm/yr for CSR data).

6. Regional Uniform Gravity Rate

[38] Bearing in mind the bias between results produced
with and without the GRACE data assimilated (section 5),
we decided to experiment with introducing to the model a
uniform gravity rate across the Fennoscandia region.
[39] We therefore adjusted the observation equation for

the GRACE rates to be

_GGRACEð�; �Þ ¼ _GGIAð�; �Þ þ _� þ "GRACEð�; �Þ ð14Þ

where _� is a uniform, regional, gravity rate.
[40] Including this rate (estimated at 0.22 ± 0.03 mGal/yr)

eliminates much of the bias between solutions with and
without the GRACE data included. Peak GIA signal in the
output models is considerably reduced compared to models
without _� included in the assimilation (9.5 ± 0.4 mm/yr
compared to 11.4 ± 0.3 mm/yr, with all data assimilated),
since the entire solution is shifted down (Figure 10). This
brings the estimate for peak uplift closer to the estimates
without the GRACE data assimilated. This also brings the
RSL model to a level consistent with that estimated without
the GRACE data (Figure 8), so the corresponding estimate
for _� (1.4 ± 0.2 mm/yr) is also more consistent. Although
our estimate for peak FAGA without _� included (0.8 ±
0.1 mGal/yr) was already lower than the ∼1.2 mGal/yr esti-
mated by Steffen et al. [2008], to gain consistency in our
results the solution seems to require an even lower peak
FAGA rate of 0.6 ± 0.1 mGal/yr.

Figure 9. Comparison of output RSL model with tide gauge rates, with different colors indicating dif-
ferent a priori reference frame constraints. (a) No GRACE rates were assimilated into the model (only
GPS and tide gauge), (b) GRACE rates were also assimilated, and (c) GRACE rates were also assimilated
and a uniform regional gravity rate was estimated.
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[41] Use of this uniform regional gravity rate also has
the effect of reducing the bias seen between results with
and without the reference frame parameters constrained
(Figure 9c). In fact, inclusion of _� results in reasonable
consistency in the model results and estimate for _� regard-
less of whether the GRACE data is included and regardless
of a priori reference frame uncertainties.
[42] Use of GFZ GRACE data results in a different esti-

mate for _� (0.28 ± 0.03 mGal/yr) compared to that for CSR
(0.22 ± 0.03 mGal/yr). However, use of this regional gravity
rate results in better agreement for estimated values of
_� (1.3 ± 0.2 mm/yr for GFZ and 1.4 ± 0.2 mm/yr for CSR,
compared with 3.6 ± 0.1 mm/yr for GFZ and 3.3 ± 0.1 mm/yr
for CSR without the uniform gravity rate included). Simi-
larly, peak model uplift when the GFZ rates are assimilated

is reduced to a more consistent 9.5 ± 0.4 mm/yr (compared
with 11.9 ± 0.3 mm/yr without a uniform gravity rate
included).

7. Collocated GPS and Tide Gauge Sites

[43] A number of other studies [e.g., Milne et al., 2001;
Johansson et al., 2002] have estimated _� using a more direct
“correction” of the tide gauge rates using land uplift rates
from collocated GPS sites or estimates at the tide gauge
locations from a polynomial fit to the GPS rates. A model of
the sea surface change is also required. The relationship
between these parameters can be expressed as

_sTGð�; �Þ ¼ _gMODELð�; �Þ � _rGPSð�; �Þ þ _� ð15Þ

where _sTG(l, �) is an estimated tide gauge rate, _gMODEL(l, �)
is an estimate of the sea surface rate from a model, _rGPS(l, �)
is estimated radial deformation rate from GPS, and _� is uni-
form sea level rate.
[44] We carried out a similar study using the tide gauge

and GPS rates used for our assimilation calculations. We
selected collocated sites based on the condition that a GPS
station must be within 1° of a tide gauge. If there was more
than one tide gauge within the 1° we used the closest site.
Occasionally a particular GPS station is collocated with
several different tide gauges. For the sea surface model we
used a forward model that was calculated using a litho-
spheric thickness of 120 km, upper mantle viscosity of 8 ×
1020 Pa s and lower mantle viscosity of 1022 Pa s (these are
the values for the best fit Earth model estimated by Milne
et al. [2001]).
[45] Using this technique we estimate a value for _� of

1.7 ± 0.1 mm/yr (Figure 11a). A comparable value (1.6 ±
0.3 mm/yr) is estimated using our assimilation technique,
both when only the collocated GPS and tide gauge sites are
assimilated (Figure 11b), or when all tide gauge and GPS
sites are assimilated (Figure 11c). The results for an
assimilation of all the data, including GRACE, are also
consistent if the additional _� parameter is estimated. (The
smaller uncertainties for the collocation results do not
indicate a higher degree of certainty in this rate: The given
uncertainties are formal errors estimated using our least
squares fit or the assimilation code, and the assimilation
code propagates the uncertainties for all a priori predictions
and data uncertainties, compared to just GPS and tide gauge
rate uncertainties for the collocation study.) Our estimates
for _� compare with an estimate of 1.9 ± 0.2 mm/yr from
Johansson et al. [2002] and 2.1 ± 0.3 mm/yr from Milne
et al. [2001].

8. Discussion and Conclusions

[46] We successfully assimilate GPS, tide gauge, and
GRACE gravity rates into a self‐consistent model for GIA
in the Fennoscandia region. Our assimilation simultaneously
estimates uncertainties, which are decreased as increasing
amounts of data are assimilated. The technique mitigates the
problem of any inaccuracies in the GPS reference frame by
simultaneously estimating reference frame adjustments.
[47] The geographical distribution of our updated GIA

models are relatively consistent with previous results. For
example, we observe the approximately southwest to

Figure 10. Model results when a uniform, regional, gravity
rate is included in the estimation: (a) Horizontal and radial
deformation, (b) FAGA, and (c) RSL.
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northeast elongation observed in many other studies. Our
final estimate for peak uplift (9.5 ± 0.4 mm/yr) is also
consistent with that estimated by previous studies (∼10 mm/yr
[Milne et al., 2001; Johansson et al., 2002; Milne et al.,
2004]). However, our final models indicate a location for
peak uplift that is several degrees to the east of many pre-
viously published results. Previous model results have
generally indicated an area of peak uplift slightly to the west
of the northern Gulf of Bothnia [e.g., Lambeck et al., 1998;
Milne et al., 2001; Johansson et al., 2002], while our
updated model places this location in the middle of the
northern Gulf of Bothnia. One explanation for this shift
could be the impact of having continuous gridded data (i.e.,
the distribution of ground observations could bias the esti-
mated location). Milne et al. [2001] illustrate the effect of
spatial sampling by calculating a polynomial fit to their
numerical model values at BIFROST station locations only.
The initial model has a larger peak that covers the northern
Gulf of Bothnia, while the resampledmodel has a smaller peak
to the west. Our model is also more consistent with the
Gaussian fit to BIFROST results illustrated by Johansson
et al. [2002], who observe peak uplift from their observa-
tions several degrees east of peak uplift for their best fit
model. Perhaps the observations, which are reflected in our
model, are indicating that the ice models used may not
accurately reflect the true ice thickness for the area.
[48] Our estimates for a regional relative sea level rate

(∼1.5 mm/yr) are consistent regardless of a priori reference
frame uncertainties or which combination of data sets are
assimilated, although if GRACE data are included this is
only the case if a uniform regional gravity rate is also
estimated. Our estimates for sea level rate are also relatively
consistent with previously published values.
[49] There are several possible explanations for the

requirement of a uniform regional gravity rate to assimilate
the GRACE data with consistent results. Any far‐field con-
tributions to the GRACE gravity field that are unmodeled by
our regional GIA field will appear as a nearly geographically
constant offset in our solution. Such contributions may be
due to an error in the low‐order harmonics of the GRACE
field, or simply an effect that is not associated with GIA. It is
possible, for example, that errors in the model estimates of

GIA for the Laurentia ice sheet over North America (the
effects of which are included in our a priori GIA predictions
and covariances) cause a bias across Fennoscandia that
appears uniform due to the small size of the region.
[50] Alternatively, Steffen et al. [2008] note that secular

variations in the GRACE data may be affected by aliasing
errors associated with mismodeling of the ocean tides, par-
ticularly at high latitudes such as this. Ray et al. [2003]
showed that aliasing of K1 and K2 tides could cause
interannual signals in the GRACE data with 7.4 and 3.7 year
periods, which will cause inaccuracies in our estimation of
the gravity rate for our relatively short (6 year) data span. In
future work we should include estimated cycles at these
periods in our rate calculations. Similarly, inconsistencies
could be caused by the relatively short time period sampled
by the GRACE data. We indicated through comparison of
estimated sea level rates for different time periods that
longer‐period (e.g., decadal) changes in sea level can be
significant. Other possibilities are mismodeling of the
hydrology signal over Fennoscandia (Steffen et al. [2008]
show that other hydrological models have quite different
patterns, and also suggest that some very long period
hydrological trends could exist that would affect our rate
estimates) or inconsistencies caused by our application of
the GRACE destriping or smoothing routine to both model
and data. This new technique provides an excellent platform
for exploring these questions further.

Appendix A: Matrix Identities Used

[51] Here we state without proof the matrix identities used
at the end of section 2.1:

PBT BPBT þ R
� ��1¼ BTR�1Bþ P�1

� ��1
BTR�1 ðA1Þ

P � PBT BPBT þ R
� ��1

BP ¼ BTR�1Bþ P�1
� ��1 ðA2Þ

where P and R are positive definite matrices. Equation (A2)
is known as the Woodbury identity [Golub and van Loan,
1996]. The identities are derived by inverting via block
elimination a 2 × 2 block matrix. The elimination is per-

Figure 11. Comparison of RSL rates using (a) collocated GPS and tide gauges and the model described
in equation (5), (b) model output from an assimilation using only collocated sites, (c) model output using
all available sites.
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formed first in one direction and then the other, and the two
results are equated.
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