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INTRODUCTION

The western side of the Antarctic Peninsula (WAP)
is experiencing some of the most dramatic climate
change on the planet (IPCC AR4; Trenberth et al.

2007), with rapid ocean and atmosphere warming
(Vaughan et al. 2003, Meredith & King 2005, Martin-
son et al. 2008), melting of coastal glaciers (Vaughan
2006), and reductions in seasonal sea ice cover
(Stammerjohn et al. 2012, Tur ner et al. 2012). Over
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ABSTRACT: The western Antarctic Peninsula is experiencing dramatic climate change as warm,
wet conditions expand poleward and interact with local physics and topography, causing differen-
tial regional effects on the marine ecosystem. At local scales, deep troughs (or canyons) bisect the
continental shelf and act as conduits for warm Upper Circumpolar Deep Water, with reduced sea-
sonal sea ice coverage, and provide a reservoir of macro- and micronutrients. Shoreward of many
canyon heads are Adélie penguin breeding colonies; it is hypothesized that these locations reflect
improved or more predictable access to higher biological productivity overlying the canyons. To
synoptically assess the potential impacts of regional bathymetry on the marine ecosystem, 4 major
canyons were identified along a latitudinal gradient west of the Antarctic Peninsula using a high-
resolution bathymetric database. Biological−physical dynamics above and adjacent to canyons
were compared using in situ pigments and satellite-derived sea surface temperature, sea ice and
ocean color variables, including chlorophyll a (chl a) and fucoxanthin derived semi-empirically
from remote sensing reflectance. Canyons exhibited higher sea surface temperature and reduced
sea ice coverage relative to adjacent shelf areas. In situ and satellite-derived pigment patterns
indicated increased total phytoplankton and diatom biomass over the canyons (by up to 22 and
35%, respectively), as well as increases in diatom relative abundance (fucoxanthin:chl a). While
regional heterogeneity is apparent, canyons appear to support a phytoplankton community that is
conducive to both grazing by krill and enhanced vertical export, although it cannot compensate
for decreased biomass and diatom relative abundance during low sea ice conditions.

KEY WORDS:  Western Antarctic Peninsula · Canyons · Phytoplankton · Diatoms · Remote 
sensing · Adélie penguin habitat · Sea ice
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the past half century, both air and sea temperatures
have risen in response to regional and global forcing,
with a 6°C increase in average wintertime air tem-
perature (e.g. Ducklow et al. 2012), a 1°C increase in
sea surface temperature (SST) (Meredith & King
2005), and a 0.7°C increase in subsurface ocean tem-
perature attributed to both ocean warming and
changes in ocean circulation (Martinson et al. 2008,
Martinson 2012). Changes in regional wind patterns
and seasonal ice−ocean feedbacks have led to a
decline in the duration of seasonal sea ice cover by
nearly 90 d since the beginning of satellite-based
measurements in 1979 (Stammerjohn et al. 2008,
2012). Multi-scale repercussions are evident through -
out the marine ecosystem as warmer conditions
expand poleward and interact with local physics and
topography (Duck low et al. 2007).

How interannual and seasonal changes in sea ice
affect ecosystem productivity along the WAP is com-
plex, with likely non-linear responses of phytoplank-
ton productivity to decreased sea ice coverage.
Antarctic coastal waters exhibit high rates of primary
production (100−200 g C m−2 yr−1) during a limited
growing season of about 150−180 d (Smith et al.
1998, Vernet et al. 2008, Ducklow et al. 2012). These
high rates are often observed along the retreating
sea ice edge in spring, where there are ample macro -
nutrients and water column stability, the latter influ-
encing light availability (Mitchell & Holm-Hansen
1991). These conditions allow for large diatom-domi-
nated blooms that support short food chains, consist-
ing of diatoms, krill, and apex predators (Huntley et
al. 1991). With atmospheric warming, large areas
(~24 × 103 km2) of shallow coastal systems that are
newly open following extensive sea ice loss may
allow for increased biomass, estimated at 9.1 × 105 t
of carbon (Peck et al. 2010). Analyses of 3 decades of
satellite and in situ chlorophyll a (chl a) data along
the WAP shelf suggest that phytoplankton biomass
has increased in the central WAP at Marguerite Bay,
but decreased in the northern WAP north of Anvers
Island (Montes-Hugo et al. 2009). Latitudinal trends
reflect reduced seasonal sea ice cover as well as
increased cloud formation and winds in the north.
Decreased biomass in the northern WAP is also asso-
ciated with substantial de crea ses in primary produc-
tion (12−50%; Vernet et al. 2008). Finally, phyto-
plankton (Montes-Hugo et al. 2009) and food-web
structure (Sailley et al. 2013) may shift with contin-
ued reductions in sea ice cover, with dominance by
smaller phytoplankton and in creased microbial recy-
cling in regions where seasonal sea ice formation is
minimal.

Submarine canyons can locally influence both hor-
izontal and vertical ocean circulation patterns and
nutrient availability, which in turn affect phytoplank-
ton dynamics (e.g. Allen et al. 2001, Ryan et al. 2005)
and subsequent distribution and diversity of higher
trophic levels (Cunha et al. 2011, Fanelli et al. 2011).
Canyon dynamics along some regions of the Antarc-
tic continental margin may be affected both by latitu-
dinal trends in atmospheric warming and sea ice loss,
as well as regional shifts in winds and ocean circula-
tion. Along the Amundsen and Bellinghausen Seas,
the southern boundary of the Antarctic Circumpolar
Current (ACC) is not spatially separated by the pres-
ence of a large subpolar gyre (like in the Weddell and
Ross Seas) but abuts the continental shelf (Nitsche et
al. 2007, Clarke et al. 2012, Martinson 2012). Upper
Circumpolar Deep Water (UCDW) is found in the
mid-level ACC and is characterized by a vertical
maximum in potential temperature, low dissolved
oxy gen, and relatively high macro- and micronutri-
ent concentrations (Hofmann et al. 1996, Meredith &
King 2005, Martinson et al. 2008). While wind-driven
upwelling and internal tides have been hypothesized
as important transport mechanisms for UCDW onto
the continental shelf (Wallace et al. 2008), recent
modelling studies (e.g. Din niman et al. 2011, St. Lau-
rent et al. 2013) and observations (Martinson &
McKee 2012) demonstrate that interactions between
the ACC and canyon mouths on the shelf-slope
break are also important factors in the shoreward
movement of UCDW. Canyons along the WAP and
Amundsen continental shelves may facilitate the de -
livery of nutrients and heat to coastal surface waters,
which can directly and indirectly affect phytoplank-
ton dynamics (Smith et al. 1998, Schofield et al. 2013)
through changes in physiological rates or changes in
the onset or duration of the growing season. Some
studies have postulated positive effects of UCDW
intrusions on phytoplankton (e.g. Prézelin et al. 2000,
2004); intrusions of UCDW may dilute high levels of
macronutrients found on continental shelves (Sere-
brennikova & Fanning 2004).

Evidence from in situ studies over the Palmer Deep,
south of Anvers Island (~64.94° S, 64.42° W), suggests
enhanced productivity of planktonic ecosystems
above the canyon compared with adjacent shallow ar-
eas (Ducklow et al. 2013, Oliver et al. 2013, Schofield
et al. 2013). Adélie penguins from breeding colonies
in the Palmer region forage almost exclusively in
and/or near canyons (Oliver et al. 2013). The Adélie’s
major food source, krill, tends to aggregate in the
canyon with the long harmonic of the semi-diurnal
tide (27 d; Bernard & Steinberg 2013). Glider surveys

12



Kavanaugh et al.: Ecosystem dynamics over WAP canyons

revealed increases in chl a concentration in the
canyon, particularly where warmer temperatures in-
vade the surface layers (Schofield et al. 2013). These
observations (from Palmer Deep) support 3 intercon-
nected hypotheses regarding the ecological roles of
canyon dynamics along the WAP. Canyons act as con-
duits for UCDW, which can (1) reduce seasonal sea ice
cover and increase access to open water areas for for-
aging by top predators, both during the initial breed-
ing season in spring as well as over the winter sea ice
period; (2) provide a reservoir of  relatively high
macro- and micronutrients year-round; and (3) deliver
warmer water, which can directly and indirectly affect
biological production by affecting physiological pro-
cesses and water column stratification.

Understanding how these local process studies
extend to the entire WAP or throughout the season is
limited by the lack of synoptic observations inherent
in ship based in situ sampling (as noted by Prézelin et
al. 2004). Synoptic satellite-based efforts have focu -
sed on regional-scale or larger-scale processes along
the WAP (e.g. Smith et al. 2008,
Montes-Hugo et al. 2009, Peck et al.
2010, Cimino et al. 2013), with high
cloud cover and lack of topographical
detail limiting analyses at higher
space/time resolution. No studies to
date have focused on local dynamics
at seasonal or finer scales. Using a
multi-year record of pigments col-
lected from nearshore sampling near
Palmer Station and from annual ship-
based cruises along the WAP, as well
as high-resolution bathymetry, high-
resolution satellite-based sea ice cov-
erage, SST, and ocean color data, we
tested hypotheses 1 and 3 (above)
across multiple canyons along the
WAP. Specifically, we addressed the
following questions. Are canyons as -
sociated with measureable differences
in sea ice coverage and SST relative
to adjacent shelf areas? Do canyons
aggregate enhanced phytoplankton
bio mass compared with adjacent shelf
areas? Do we see variations in the
community structure of phytoplankton
above canyons? Do these patterns
vary seasonally and/or spatially? And
finally, to inform climate projections,
how are the overlying patterns affec -
ted by spatiotemporal variability in
seasonal sea ice coverage?

MATERIALS AND METHODS

In situ data

In situ data were collected as part of the regu -
lar sampling of the Palmer Long-Term Ecological
Re search (PAL-LTER; http://pal.lternet.edu/). Since
1993, the PAL-LTER has conducted regional oceano -
graphic and biogeochemical sampling each January
over a grid of hydrographic stations ex tending
400 km north−south along the WAP, and from the
nearshore region (<300 m depth) to the slope
region beyond the shelf break (>3000 m), about
200 km from the coast (Fig. 1). Beginning in 2009,
the latitudinal grid was extended an additional
300 km to the south in order to include areas with
more extensive sea ice cover. In addition, regular
twice-weekly nearshore sampling at Palmer Station
from October to April provides a seasonal context
for the January shelf-wide observations. Pigment
concentrations were measured using re verse phase
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Fig. 1. Bathymetry along the Western Antarctic Peninsula continental shelf.
Spatial resolution is 500 m (source: Bedmap 2). White dots denote location of
HPLC samples taken as part of the Palmer LTER annual surveys used to
inform the fucoxanthin algorithm from remotely sensed reflectances. Insets
show polygon regions of interest and in situ samples where applicable for (A)
North Brabant, (B) Palmer Deep, (C) Avian Island and (D) Charcot Island. 

Coordinates and summary statistics are listed in Table 1
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HPLC (Wright et al. 1991, Kozlowski et al. 2011)
and provided proxies for total phytoplankton com-
munity biomass (chl a), diatom biomass (fucoxan-
thin), and diatom relative abundance (fucoxanthin:
chl a). We recognize that variations in phytoplank-
ton carbon:chl a ratios exist in many regions of the
world ocean due to physiological acclimation to
light, nutrients, or temperature (e.g. Geider et al.
1998). However, chl a and phytoplankton carbon
are well correlated in the Southern Ocean (Arrigo
et al. 2008) and the northern WAP (Mendes et al.
2012). In phytoplankton, fucoxanthin is confined to
diatoms, prymnesiophytes (such as Phaeocystis
spp.), raphidophytes, and chrysophytes (Wright &
Jeffrey 1987); the latter 2 taxa are not well repre-
sented along the WAP. Phaeocystis has 1/10 the
fucoxanthin to chl a ratio of diatoms in iron-replete
conditions and has undetectable concentrations of
fucoxanthin when iron is limited (Aldercamp et al.
2012). Additionally, Phaeocystis does not appear to
have a significant presence at Palmer Station.

High-resolution bathymetry

Four canyons and adjacent shelf ‘controls’ were
defined along the WAP (Fig. 1) using high-resolution
bathymetry. Bathymetry was based on seafloor and
subglacial bed elevation of the Antarctic (Bedmap2;
Fretwell et al. 2013). The product Bedmap2 combines
multiple sources primarily from the British Antarctic
Survey and has a 500 m hori zontal resolution. Can -
yons were defined as localized contiguous re gions on
the continental shelf with depths >700 m. Once
canyon polygons were delineated, adja-
cent shallow (<250 m) shelf areas were
also defined using the same size polygon
with minimal change in pixel count
(Table 1). These 4 canyons represent a
subset of canyons along the WAP latitu-
dinal gradient, and landward of the
canyon heads, penguin colonies are
known to exist, either currently or in the
recent past (Fraser & Trivelpiece 1996,
Schofield et al. 2013).

Sea ice coverage

We utilized the GSFC Bootstrap
SMMR- SSM/I Version 2 quasi-daily
time series (1979−2010) of sea ice con-
centration (Comiso et al. 1997, Comiso

2010, 2012) from the EOS Distributed Active
Archive Center (DAAC) at the National Snow and
Ice Data Center (NSIDC, University of Colorado at
Boulder, http:// nsidc. org). Sea ice concentration is
derived from brightness temperatures acquired
from the following satellites and sensors: the
NASA Nimbus-7 Scanning Multi-channel Micro-
wave Radiometer (SMMR) and the Defense Mete-
orological Satellite Program (DMSP)-F8, -F11 and -
F13 Special Sensor Microwave/ Imagers (SSM/I),
and the DMSP-F17 Special Sensor Microwave
Imager/Sounder (SSMIS). Sea ice concentration is
the fraction of surface area covered by sea ice and
is hereafter referred to as sea ice coverage (in per-
centage). Sea ice concentrations were maintained
on their native grid (25 × 25 km) but binned into 8
d averages. Spring ice retreat dates were identified
as the first day sea ice concentration fell below
15% (e.g. Stammerjohn et al. 2008) using smoothed
(7 d running average) daily data.

Satellite ocean color

MODIS-Aqua Level 2B data were downloaded for
the WAP region and binned into daily geometric
means. Ocean color and SST files were binned onto
the same grid prior to temporal averaging using a
nearest neighbor technique to interpolate over the
domain of 85 to 50°W and 75 to 60°S. The grid main-
tained ~1 km resolution and thus was 1926 pixels
wide at 60°S and 998 pixels at 75°S. MODIS Level 2b
Ocean Color data include 5 remote sensing reflec -
tances (Rrs) at the following wavelengths: 412, 443,
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Region                                          Lat.       Long.       Mean       Mean area 
                                                     (°S)        (°W)     depth (m)        (km2)

North Brabant − canyon          64.01      61.74 1105             93.9
− shelf               63.98      62.09 104             87.5

Palmer Deep − N shelf           64.77      64.42 115             81.4
− canyon          64.94      64.42 1190             81.4
− S shelf           65.11      64.24 149             77.8

Avian Island − W shelf          67.89      68.76 205             84.4
− canyon          67.82      68.16 822             86.0
− E shelf           67.93      67.87 229             75.5

Charcot Island − N canyon      69.56      75.70 616             14.2
− N shelf           69.68      75.70 241             14.1
− W canyon      69.84      76.08 698             27.2
− W shelf          69.72      76.05 206             25.6

Table 1. Summary of bathymetric regions of interest (ROI) used in the
study. Latitude (Lat.) and longitude (Long.) are coordinates for the centroid 

of the ROI. Depth and area are for the ROI, not the entire feature
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488, 531 and 555 nm. Rrs is computed by dividing nor-
malized water leaving radiances (nLw) by the mean
solar irradiance (Gordon & Wang 1994), has units of
per steradian (sr−1), and is now provided as a stan-
dard NASA Level 2 product.

Standard OC-3 and OC-4 MODIS−Aqua algo-
rithms tend to underestimate chl a concentrations
along the WAP (Dierssen & Smith 2000). Dierssen
& Smith (2000) found that the following algorithm
to compute chl a (in mg m−3) works well for the
WAP:

log10(chl a)  = 0.641 − 2.058R − 0.442R2 − 1.140R3 (1)

where R = log10(Rrs488/Rrs555) and Rrs488 and Rrs555 are
the remote sensing reflectances at 488 and 555 nm,
respectively. The algorithm is confirmed with our
comparisons to in situ chl a (Fig. 2). A remote-
 sensing estimate of fucoxanthin concentration was
determined empirically using multiple linear re -
gression (MLR) on remote sensing reflectances
(Rrs). Mixed step-wise MLR analyses were con-
ducted to determine the combination of wave-
lengths and wavelength ratios (to 555 nm) with
interactions that resulted in a best empirical fit
(probability to enter and leave of 0.25). The step-
wise process was stopped using the Akaike crite-
rion, which penalizes models that are overly com-
plex to reduce the likelihood of over-fitting.
Match-ups to in situ data were conducted on the
same day, using the geometric mean of the remote-
sensing data in a 1 km circle centered on the in situ
data point (Fig. 2). The final model explained 89%
of the variance for fucoxanthin (mg m−3) (Fstat =
32.4, df = 3,48, p < 0.001, R2 = 0.89; Fig. 2C) and is
represented by the following empirical relationship
(Table 2):

log10(fucoxanthin) = 1.49 − 0.67X1 + 
1.98X2 − 2.33X3

(2)

where X1, X2, and X3 are the reflectance ratios at
412, 443, and 488 nm to 555 nm, respectively. Note
that the high reflectance ratio spikes (>10) were
removed. In global algorithms (Alvain et al. 2008),
these 3 wavelengths differentiate waters with dia -
tom dominance. Pure fucoxanthin would be ex -
pected to absorb light strongly at 488 nm wave-
length and weakly at 412 nm (Wright & Jeffrey
1987), and diatoms scatter light efficiently at the
lower wavelengths (e.g. Vaillancourt et al. 2004).
For both chl a and fucoxanthin, only satellite-
derived values within the range of the in situ pig-
ments were used (0.1−35 mg m−3 for both chl a and
fucoxanthin).
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Mean SE t p

Intercept 1.4519 0.1217 11.9260 <0.0001
R412 –0.6897 0.1368 –5.0434 <0.0001
R447 1.9821 0.2836 6.9889 <0.0001
R488 –2.3330 0.1859 –12.5489 <0.0001

Table 2. Regression statistics for satellite-derived fucoxan-
thin concentration from remote sensing reflectance ratios 

(Rrs; relative to Rrs at 550 nm)
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Statistics

Time series were created by averaging (geometric
where appropriate) the pixels within the polygons
described above. Concurrent ocean color, SST, and
sea ice data were available from July 2002 through
the end of 2010. For the present study, we considered
the geometric mean (Campbell 1995) of pigment con-
centrations averaged over the first optical depth
(37% surface irradiance = ~15 m). Paired t-tests were
conducted on sea ice, SST, chl a, and fucoxanthin
across all years to determine whether canyons and
shelf areas were significantly different in these prop-
erties within and across years. The mean percents (as
opposed to the percent of the means) are reported for
ice, chl a, and fucoxanthin; the mean difference is
reported for SST. In situ chl a and fucoxanthin were
also compared with satellite estimates across 2
regions of interest, Palmer Deep and Avian Island
(Table 1; see Fig. 1 for site locations). Because sea-
sonal sampling at Palmer Deep is restricted to shal-
low waters and the canyon head and was not avail-
able for Avian Island, only cruise data were used and
thus restricted to Januarys of 2003−2009 (Palmer
Deep, N = 34; Avian Island, N = 20). ANOVA was
used to determine whether in situ properties above
canyons were significantly different from adjacent
shelf areas.

RESULTS

Pixel retrieval at 8 d frequency

Sensitivity to determine differences between can -
yons and adjacent shelf areas is affected by sufficient
cloud-free or otherwise flagged pixels and within-re-
gion heterogeneity. For chl a, detectable differences
were ~5% at North Brabant and Charcot Island, 8%
at Palmer Deep, and 15% at Marguerite Bay (Fig. A1
in the Appendix). For fucoxanthin, detectable differ-
ences were 10% at all canyons except Marguerite
Bay, where spatial heterogeneity likely resulted in
lower sensitivity (27% minimum difference). Low sig-
nal to noise pixels are flagged in Level 2 data; for
MODIS Aqua, on-orbit signal to noise ratio at 412 nm
is adequate to obtain a surface signal after atmos-
pheric correction, but less than that of the chl a wave-
lengths (1.3 compared with >1.6; Xiong et al. 2002).
Because the fucoxanthin algorithm relies on the Rrs

412 nm band, retrieval of the fucoxanthin was slightly
less (1−3%) than that of chl a in time, but did not vary
significantly from that of chl a in space.

Sea ice effects

Seasonal sea ice coverage exhibited latitudinal
variability, with winter maxima in percent sea ice
cover in the northern sites averaging <30% at North
Brabant and ~50% at Palmer Deep (Fig. 3). Although
some years in the recent record saw much greater
winter sea ice coverage (2005 and 2006), no years saw
complete (100%) winter ice coverage at these 2
northern sites. Avian Island, by contrast, had an aver-
age winter sea ice coverage of ~80% (Fig. 3), with
some years (2003, 2005−2006) reaching over 95%
(Fig. 4). Starting in 2007, all sites exhibited relatively
lower sea ice coverage, including the 2 southern sites
(Avian and Charcot). Charcot Island often reached
complete (100%) winter sea ice coverage and was not
ice-free during the summers of 2005 and 2006. Sea
ice duration also was variable, with the spring sea ice
retreat at North Brabant and Palmer Deep often oc-
curring well before 1 January, with the ex ception of
2005 and 2006. The spring sea ice retreat at Avian Is-
land lagged that at Palmer Deep by ~2 wk, with pre-1
January retreats occurring from 2007 onward.

Sea ice coverage varied substantially over the
satellite record (Fig. 4) but generally followed pat-
terns outlined by Stammerjohn et al. (2008). Interan-
nual sea ice reductions were evident (e.g. more than
1 standard deviation lower than the 1979−2002 aver-
age) as indicated by lower late winter/early spring
(Sep−Oct) sea ice coverage and earlier spring sea ice
retreat, particularly from 2007 to 2010 (Fig. 4C−F).
Late winter/early spring sea ice coverage was often
slightly lower over the canyon versus the adjacent
shelf area at Palmer Deep (Fig. 4C), while an earlier
spring sea ice retreat occurred frequently over the
canyon (versus adjacent shelf area) (Fig. 4E). At
Avian Island, late winter/early spring sea ice cover-
age was persistently less over the canyon (versus the
adjacent shelf area) (Fig. 4D), but there was little dif-
ference in the timing of spring sea ice retreat
between those 2 areas (Fig. 4F).

Canyons, on average, had reduced sea ice cover-
age compared with adjacent shelf areas (Figs. 3−5),
except at Charcot. In contrast, sea ice phenology
appeared more variable between canyon and adja-
cent shelf areas. At North Brabant and Palmer Deep,
lower winter sea ice coverage in the canyons was
also accompanied by earlier spring sea ice retreat.
While the spring sea ice retreat in general became
earlier over the study period (e.g. Fig. 4), retreat tim-
ing was not different between the canyon and adja-
cent shelf area at Avian Island between 2002 and
2010 (Figs. 3, 5). At any given time period, winter sea
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ice coverage was on average 10% lower (Table 3,
Fig. 3) and sometimes as much as 15% (2006−2007)
or 20% (2002−2003) lower over the canyon. At Char-
cot Island, both the canyon and the shelf exhibited
high sea ice concentrations year-round; however,
spring sea ice concentrations were significantly
lower over the canyon (Table 3).

SST effects

Spring through fall mean SST exhibited a latitudi-
nal gradient, with a gradual decrease in mean SST
with latitude from North Brabant (~−0.2°C) to Palmer
Deep (−0.3°C) to Avian Island (−0.4°C), and then a
large decrease to Charcot Island (−0.9°C). With the
exception of Charcot Island, summertime tempera-
tures averaged above 0°C, with temperatures near-
ing 1°C in the northern canyons (Fig. 3). However,
there were qualitative differences in the timing: war -
mer canyon temperatures occurred in early spring in
Marguerite Bay and in summer in the northern 2
canyons. Canyons, on average, had warmer spring to
fall temperatures than the adjacent shelf areas
(>+0.1°C; Fig. 5, Table 3).

Phytoplankton dynamics

Phytoplankton biomass did not exhibit a latitudinal
gradient, but rather a maximum at Avian Island, with
spring−summer chl a averaging ~1.5 mg m−3 and
almost 4 mg m−3 during January and February. Char-
cot Island exhibited slightly less chl a (~2 mg m−3

January average), with a sharp biomass decline in
February. Annual means at Palmer Deep and North
Brabant (~0.6 and ~0.7 mg m−3, respectively) were
much lower than at Avian Island. Concentrations of
chl a were episodically higher over the canyons
(Figs. 5, 6; discussed in more detail below); over the
time series there was a positive effect of canyons on
chl a at Palmer Deep and Avian Island (Figs. 3, 5),
but a limited effect at Charcot Island in part to small
 sample size.

Diatom abundance, as inferred by satellite-derived
fucoxanthin, followed a similar latitudinal pattern as
chl a, with an optimum at Avian Island, where the
concentration of fucoxanthin averaged 1.3 mg m−3

but reached >3 mg m−3 in summer (Fig. 3). Diatom
biomass declined to the south and north, where bio-
mass at Charcot Island and Palmer Deep averaged
0.94 and 0.35 mg m−3, respectively. Diatom abun-
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Fig. 5. Mean (±SE) sea ice coverage, sea surface temperature (SST), chlorophyll a (chl a) and fucoxanthin (July 2002−June
2010) for 4 canyons and adjacent shelf areas along the western side of the Antarctic Peninsula. NB: North Brabant; PD: Palmer
Deep; AI: Avian Island; CI: Charcot Island. Mean values were calculated for matching canyon and shelf pairs, compiling 8 d
averages from June through August for sea ice coverage, and October through April for SST, chl a, and fucoxanthin propor-

tion. Asterisks denote significant differences (paired t-test, p < 0.05)
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ROI Canyon (SE) Shelf (SE) Difference (SE) Count t Prob (<|t |)

Winter ice: Jun−Aug
NB 22.9 (24.1) 22.6 (22.9) 6.8 (4.3) 88 1.16 0.251
PD 21.1 (23.7) 24.4 (23.0) −40.7 (4.3) 88 −10.62 <0.001
AI 66.7 (20.6) 71.9 (23.6) −2.7 (2.1) 88 −8.87 <0.001
CI 91.7 (10.6) 90.0 (9.7) 1.7 (0.2) 88 9.71 <0.001
Spring ice: Sep−Oct
NB 0.91 (3.64) 1.28 (4.57) −39.1 (5.7) 24 −1.75 0.09
PD 13.6 (23.6) 21.6 (21.8) −15.3 (3.2) 24 −13.8 <0.001
AI 32.8 (27.6) 32.4 (31.8) 12.8 (0.8) 24 0.28 0.78
CI 72.0 (31.3) 75.0 (28.0) −1.7 (0.3) 24 −2.49 <0.05
SST: Oct−Apr
NB −0.15 (1.07) −0.34 (1.00) 0.18 (1.1) 191 4.74 <0.001
PD −0.29 (1.02) −0.38 (0.89) 0.09 (1.0) 157 2.44 <0.01
AI −0.33 (1.01) −0.46 (0.91) 0.12 (1.2) 152 3.29 <0.01
CI −0.95 (0.62) −0.89 (0.58) 0.05 (2.3) 76 −0.76 0.4518
Chlorophyll a: Oct−Apr
NB 0.66 (0.04) 0.65 (0.03) 8.5 (3.0) 131 0.67 0.5
PD 0.78 (0.06) 0.71 (0.05) 21.9 (7.0) 100 2.06 <0.05
AI 1.71 (0.15) 1.56 (0.13) 21.5 (7.0) 114 2.21 <0.05
CI 1.61 (0.28) 1.46 (0.32) 51.9 (34) 16 0.52 0.61
Fucoxanthin: Oct−Apr
NB 0.33 (0.03) 0.33 (0.02) 11.4 (4.6) 131 0.2 0.84
PD 0.35 (0.04) 0.34 (0.03) 13.9 (6.0) 100 0.09 0.93
AI 1.27 (0.13) 1.09 (0.10) 35 (7.5) 114 3.72 <0.001
CI 0.94 (0.21) 0.81 (0.21) 98 (61) 16 0.65 0.52

Table 3. Summary statistics of remotely sensed variables over canyons and adjacent shelves. Regions of interest (ROI) are
coded as follows: North Brabant (NB), Palmer Deep (PD), Avian Island (AI) and Charcot Island (CI). Means and standard errors
(SE) are reported for sea ice, pigments and sea surface temperature (SST). Mean differences are reported as mean percentage
change of canyon from shelf values across time period of interest; SST reflects mean absolute differences in °C (see ‘Materials 

and methods’). t-values are the result of paired t-tests. Bold values denote statistically significant differences
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dance was lowest at North Brabant,
where fucoxanthin concentrations on
the shelf averaged 0.33 mg m−3. The
seasonality of diatom relative abun-
dance was somewhat different than
that of chl a. Two or more peaks in rel-
ative diatom abundance appeared sea-
sonally (Fig. 3), one usually occurring
before 1 January and one after.

The effect of canyons on diatom
abundances varied latitudinally, with
no difference in the northern can yons
and higher diatom abundances relative
to shelf areas in the southern canyons
(t-test, p < 0.05; Table 3). The effect
was greatest at Avian Island (as meas-
ured by the change relative to the
shelf). The  difference was also strong at
Charcot Island, al though the number of
co-occurring measurements was too
sparse for statistical significance.

Interannual variation in seasonal sea
ice appeared to affect total phytoplank-
ton and diatom specific biomass at both
Palmer Deep and Avian Island (Fig. 6),
with low pigment concentrations fol-
lowing low ice years (2003, 2004, 2008,
and 2009 at Palmer Deep, and 2008 and
2009 at Avian Island). At Palmer Deep, increases in
chl a were not met with increases in fucoxanthin,
resulting in lower relative abundance of diatoms
(fucoxanthin:chl a) compared with Avian Island and
above the canyon during 2004 and 2010. At Avian
Island, potential effects of sea ice variability were
minimal; fucoxanthin abundances and relative abun-
dances were persistently high and higher than that at
Palmer Deep. The greater diatom relative abundance
over canyons was apparent during low sea ice years
(Fig. 6F), suggesting that conditions were conducive
for diatom dominance to persist at Avian Island,
despite reduced total phytoplankton and diatom
 biomass.

In situ patterns of pigments generally followed
that of satellite patterns (Fig. 7), although statistical
power was limited due to sparse data availability.
During the January cruises, chl a and fucoxanthin
concentrations were higher in the Avian Island re -
gion than in the Palmer Deep region. In both
regions, chl a was higher above the canyon than in
adjacent shelf areas in high-ice years following the
general pattern revealed by satellite-derived pig-
ments (Fig. 7B,D). Similar to satellite patterns, dur-
ing low sea ice years at Palmer Deep, the difference

in fucoxanthin between canyon and shelf areas was
absent (Fig. 7C), even tending toward reversal, indi-
cating a shift away from local diatom dominance.

DISCUSSION

Changes in WAP climate and marine ecosystems
are dramatic and coherent over several time and spa-
tial scales. As warmer, lower sea ice conditions
expand poleward, we may expect short-term in -
creases in phytoplankton abundances because of
increased light availability due to less sea ice, fol-
lowed by decreases in abundances as the summer-
time water column becomes increasingly less stable.
Canyons have episodically higher phytoplankton
biomass, as inferred from [chl a], but persistently
higher diatom relative abundances than adjacent
shelf areas. Canyons have elevated SST during the
growing season and exhibit earlier sea ice retreat or
decreased winter sea ice, perhaps due to local influ-
ences of UCDW. Intrusions of UCDW have been
hypothesized to result in enhanced diatom produc-
tion over the shelves (Prézelin et al. 2000, 2004) and
in the Ross Sea (Liu & Smith 2012). With the excep-
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tion of North Brabant, local increases of phytoplank-
ton biomass (chl a) are evident at canyons, increases
in absolute diatom biomass are evident above the
southern canyons, and increased diatom relative
abundance is apparent at Avian Island. These pat-
terns are robust despite the strong spatial gradients
in chl a, with differences in decadal-scale responses
of phytoplankton in the northern peninsula com-
pared with the southern peninsula (Montes Hugo et
al. 2009) and cross-shelf variability associated with
migration of the marginal ice zone (Smith et al. 2008).
However, the spatial and temporal patterns observed
suggest that the conditions favorable to higher
trophic levels at canyons (e.g. increased biomass and
proportion of diatoms) may be dampened under low
sea ice conditions. Specifically, while canyons main-
tain high relative diatom proportions during low sea
ice conditions at Avian Island, low sea ice conditions
at Palmer Deep are associated with total phytoplank-
ton biomass declines, decreases in diatoms, and
decreases in the relative proportion of diatoms.

Although limited in number, ocean time series are
essential for understanding how ecosystems are
responding to long-term changes, including those
driven by the climate system (e.g. Ducklow et al.
2009, Karl 2010, Doney et al. 2012). With the matura-
tion of the satellite record, ocean color proxies can
extend the inference of these important time series in
space and time, despite seasonal sea ice cover and
episodic data lapses associated with clouds. How-
ever, the use of ocean color proxies in this region is
not without caveats (Dierssen 2010). For example,
Dierssen & Smith (2000) found that [chl a] was under-
estimated along coastal Antarctica with the com-
monly used OC-2 algorithm, a pattern confirmed
here with the more recent MODIS-Aqua record.
Moderately low bacterial abundances (e.g. Ducklow
et al. 2001, 2012) have been hypothesized to result in
less scattering in the blue wavelengths than typical
ocean waters (Dierssen & Smith 2000, Montes-Hugo
et al. 2007). The fucoxanthin algorithm we employed
also relies on the blue wavelengths, thus it is possible
that shifts in bacterial abundances and/or increased
glacial melt will result in spatial and temporal biases
of the algorithm. On-orbit performance of the 412 nm
band declined from 2002 to 2008 (Xiong et al. 2010),
but remained above that which is necessary for
atmospheric correction. Importantly, we do not see
evidence of annual decline in pixel retrieval at the
8 d time scale for our fucoxanthin algorithm, with
retrieval of fucoxanthin persisting at approximately
80% of chl a from 2003 to 2012. We also observed
similar patterns in the in situ data, suggesting that

the spatiotemporal patterns are robust for both satel-
lite-derived chl a and fucoxanthin over the temporal
and spatial scales analyzed here.

Canyon dynamics provide a local test bed for in -
vestigating how regional and global change might
affect bottom-up forcing through phytoplankton
abundances, specifically diatoms. With high levels
of unused macronutrients year-round, phytoplankton
growth and productivity along coastal Antarctica is
likely to be co-limited by temperature, iron, and light
(Arrigo et al. 1997, Ducklow et al. 2012). In addition,
grazing may have an impact on biomass over rela-
tively short spatial and temporal scales (Marrari et al.
2008, Bernard et al. 2012). However, photophysiol-
ogy, nutrient uptake rates, and grazing preferences
are all taxon-specific, which can affect the commu-
nity composition of phytoplankton, particularly in
highly variable environments such as the Southern
Ocean (e.g. Petrou & Ralph 2011). Furthermore, iron
limitation, light limitation, and temperature stress
may disproportionately affect diatoms (e.g. Lizotte
2001, Alderkamp et al. 2012, Martin et al. 2012). Sev-
eral factors related to optimal diatom growth condi-
tions likely interact in a non-linear fashion because of
the interaction of surface conditions and sea ice with
UCDW within canyons.

Sea ice and surface temperature patterns

Canyons act to reduce the concentration of sea ice
early in the growing season (over winter) at the more
northern (southern) sites. At Palmer Deep, the spring
retreat occurs 8−17 d earlier (1979−2008) over the
canyon than the adjacent shelf areas. In regions or
periods with sufficient and persistent winter sea ice,
the subsequent opening of the pack ice in spring
above canyons results in an enhanced and sustained
summer phytoplankton bloom relative to adjacent
shelf areas and earlier access to foraging by sea
birds. However, in regions with minimal winter sea
ice (e.g. in the northern regions analyzed here),
reduced winter sea ice may result in open water dur-
ing periods of insufficient insolation, resulting in little
benefit for phytoplankton growth rates. Successional
shifts from diatoms to cryptophytes may occur earlier
as surface salinities drop in response to spring−
summer glacial melt (Moline et al. 2004). For exam-
ple, when glacial melt near Palmer Station (on An -
vers Island) occurred earlier, shifts towards crypto-
phyte dominance occurred earlier and were stronger.
These early glacial melt years also coincided with
earlier sea ice retreat.
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At local scales, canyons are significantly warmer
than adjacent shallow shelf areas (present study,
>+0.1°C) across the growing season. The tempera-
ture difference likely reflects a combination of en -
hanced solar warming under more ice-free condi-
tions and the upwelling or mixing of warm UCDW
into colder surface waters. The temperature increase
is more apparent in mid to late summer in the north-
ern canyons (North Brabant and Palmer Deep) and
occurs in spring to early summer off Avian Island. As
winter sea ice declines, there is decreased formation
of cold winter water that acts as a mixing barrier
in the growth season between warm, subsurface
UCDW and the surface layer (Martinson et al. 2008,
Martinson & McKee 2012); under lower sea ice con-
ditions, winter and spring intrusions of UCDW may
increase, resulting in increased subsurface tempera-
tures and changes in the physiology of overwintering
phytoplankton. Thus warmer water upwelled in sum-
mer may directly facilitate diatom-specific growth
through temperature-related metabolic increases or
through the de livery of associated micronutrients.
However, the seasonal timing of increased fucoxan-
thin abundance over canyons occurs independently
of a detected tem perature effect. Thus temperature
variability alone is not sufficient to explain the timing
of seasonal increases in diatom abundances that
occur both early and late in the season, suggesting
that the interaction of UCDW with canyons may ulti -
ma tely alleviate iron or light limitation for diatom
 populations.

Biophysical dynamics

Biophysical dynamics within canyons along the
WAP are conducive to phytoplankton production,
and, in the southern canyons, higher diatom biomass,
although the exact mechanism is still under investi-
gation. The increased SST above canyons suggests
that UCDW regularly reaches the surface layer
across canyons, which may alleviate light limitation
(through mixed layer shoaling) or micronutrient limi-
tation. Water transported through canyons and
upwelled or mixed subsequently to the surface may
also have elevated bioavailable iron levels due to
sedimentary sources. Benthic efflux of coastal sedi-
ments is potentially a large source of iron along
Antarctic (Marsay et al. 2014) and other coastal mar-
gins (e.g. Lam & Bishop 2008). However, we re -
stricted our remote sensing study to canyon flanks,
minimizing effects at canyon heads, where this effect
may be the largest. Future efforts could focus on spe-

cific ocean color derived products (e.g. Behrenfeld et
al. 2009, McGaraghan & Kudela 2012) and can be
coupled with in situ trace metal chemistry and ongo-
ing incubation experiments to determine nutrient
sour ces (e.g. UCDW, glacial melt, resuspended sedi-
ments) and phytoplankton responses.

Canyons across the WAP appear to affect phyto-
plankton community structure on seasonal and inter-
annual scales. Two seasonal shifts in community
structure towards diatom dominance are evident in
our time series, and both are likely affected by the
interaction of canyons and sea ice. The first shift co-
occurs with the canonical ice edge melt bloom that
occurs early in the season as a function of sea ice
melt, freshwater input, and subsequent stratification.
A second increase in diatom relative abundance
occurs later in the season. At regional scales, these
second blooms can be associated with stratification
via glacial melt (Dierssen et al. 2002, Ducklow et al.
2007).

Depending on the magnitude of winter sea ice loss
and early recession in spring, ice edge blooms may
be enhanced (e.g. Charcot) or diminished (e.g.
Palmer) over canyons. Blooms under and along the
melting edge of sea ice are dominated by diatoms
(Lizotte 2001, Martin et al. 2012). The contributions
of sea ice algae and overwintering free phytoplank-
ton to ‘seeding’ the marginal ice edge bloom de -
pends on ecological succession within the sea ice
(Lizotte 2001) and overwintering survival strategies
such as facultative heterotrophy, resting stages,
and re duced metabolism with winter temperatures
(Smayda & Mitchell-Innes 1974, Popels & Hutchins
2002). In a laboratory study mimicking winter dark
conditions, increased temperatures resulted in re -
duced storage compounds, chl a and physiological
state in free-living populations (Martin et al. 2012).
Increased temperature also resulted in re du ced
physiological recovery in both sea-ice- residing and
free-living phytoplankton when the lights were
increased to mimic spring conditions (Martin et al.
2012). Thus, depending on the magnitude of sea ice
loss, decreased winter sea ice cover and earlier phe-
nology may reduce the fitness of overwintering
diatoms and change the structure of phytoplankton
populations associated with the sea ice edge retreat.

Phytoplankton structure and biomass

Diatoms increase in abundance again in late sum-
mer, with timing associated with the increased SST
signature from upwelled UCDW and solar heating.
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While micronutrient availability likely increases with
intrusions of UCDW, large extents of open water may
be prone to increased mixing and a more variable
light environment, particularly in the northern WAP
(Montes-Hugo et al. 2009). While total phytoplankton
biomass increases above canyons in the northern
WAP under these conditions, we see little differences
in fucoxanthin. Thus the species assemblage may or
may not be conducive to krill production.

Across sites, we observe a regional maximum of
total phytoplankton biomass, diatom biomass, and
diatom relative abundance at Avian Island within
Marguerite Bay. On decadal scales, Montes-Hugo et
al. (2009) observed higher chl a in the southern WAP,
which includes Marguerite Bay, associated with
decreases in sea ice concentration. However, the
mean sea ice concentration has declined on regional
(Stammerjohn et al. 2008, 2012, Montes-Hugo et al.
2009) and local scales (this study). While moderate
sea ice years are associated with high biomass at
Avian Island, low sea ice years (e.g. 2008, 2009) are
associated with low biomass at both Palmer Deep
and Avian Island. Thus we do not observe higher chl
a during low sea ice years during our study period at
Avian Island, likely because the baseline has shifted
toward lower sea ice concentrations. The positive
canyon effects on biomass and diatom proportions
are diminished or absent in the northern sites, partic-
ularly during low sea ice years. We recognize that the
in situ data for verification are sparse; however, the
patterns are similar for in situ and satellite-based
 pigments. While phytoplankton may initially respond
favorably to the reduced sea ice, interannual declines
in sea ice may dampen this effect. As the diatom rel-
ative abundance over the canyons shifts towards
smaller phytoplankton, we may see decreased export
and trophic transfer efficiency of particulate organic
carbon as has been inferred from regional studies
(e.g. Moline et al. 2004, Sailley et al. 2013).

CONCLUSIONS

Because of the strong connection with the ACC,
canyon studies along the WAP may illuminate the
interaction between global and regional climate
change. Sediment cores from the Palmer Deep have
marked variability in the silt to clay ratio and in
micro-fossil composition (Leventer et al. 1996). These
changes in productivity and phytoplankton species
composition are linked to the extent of glaciation and
long-scale variability in the dynamics of the ACC and
the flux of warm water of the UCDW onto the conti-

nental shelf (Shevenell & Kennett 2002, Warner &
Domack 2002). How these global and regional cli-
mate forcings affect extant ecological interactions is
a subject of great interest. Antarctic marine species
have a reduced capacity to tolerate increased envi-
ronmental temperatures, possibly because they have
evolved over 14−40 million years to survive stable,
sub-zero conditions (Pörtner et al. 2007, Clarke &
Crame 2010). By extension, ice-obligate species such
as krill and Adélie penguins may likewise be vulner-
able to changes in the amplitude of environmental
variability. Since the 1970s, Adélie penguin breeding
pairs near Palmer Station, Anvers Island, have
declined by 80% (Ducklow et al. 2013, Fraser et al.
2013). Our results suggest that habitat loss and phys-
iological stress may be compounded by reduction in
food availability through both decreases in total
phytoplankton biomass and shifts away from diatom
 dominance.

Informed from LTER observations, the habitat opti-
mum hypothesis (Fraser & Trivelpiece 1996) suggests
that during the recent high-ice ecological past,
canyons may have served to provide a more constant
food source for penguins, opening the sea ice earlier
(but not too early) for spring foraging and providing
bursts of enhanced food supply during the summer.
Our results support this hypothesis, linking phyto-
plankton abundances directly to canyons, which may
represent increased food availability for aggrega-
tions of krill (Bernard & Steinberg 2013), with subse-
quent bottom-up effects on Adélie penguins. How-
ever, they also illuminate the interaction of the
canyon effect with seasonal sea ice concentrations.
Low sea ice in space and time is associated with a
reduction in the relative abundance of diatoms and
reduced enhancement over the canyons. Thus the
transfer to higher trophic levels and particulate
organic carbon sinking fluxes over canyons may
diminish as the interannual trends in reduced sea ice
concentrations continue.
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Fig. A1. Minimum detectable difference between canyon and shelf pigment concentrations. Regions are denoted as follows:
NB: North Brabant; PD: Palmer Deep; AI: Avian Island; and CI: Charcot Island. Sensitivity is determined as the minimum dif-
ference necessary to obtain a significant result (dashed line, p < 0.05). Significance is determined using 2-sided t-tests com-

paring pixels of 8 d composites within the respective polygons
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